
Universidade Federal da Bahia
Universidade Salvador

Universidade Estadual de Feira de Santana

TESE DE DOUTORADO

Inappropriate Software Changes: Rejection and Rework

Rodrigo Rocha Gomes e Souza

Programa Multiinstitucional de
Pós-Graduação em Ciência da Computação – PMCC

Salvador
2015

PMCC-DSc-0020





RODRIGO ROCHA GOMES E SOUZA

INAPPROPRIATE SOFTWARE CHANGES: REJECTION AND
REWORK

Esta Tese de Doutorado foi apre-
sentada ao Programa Multiinstitu-
cional de Pós-Graduação em Ciência
da Computação da UFBA-UEFS-
UNIFACS como requisito parcial
para obtenção do grau de Doutor em
Ciência da Computação.

Orientadora: Christina von Flach Garcia Chavez
Co-orientador: Roberto Almeida Bittencourt

Salvador
2015



	
  

Souza, Rodrigo 
 

Inappropriate Software Changes: Rejection and Rework / Rodrigo Rocha Gomes e Souza. 
– 2015. 

 
111p.: il. 
 
Inclui apêndices. 
Orientadora: Profa. Dra. Christina von Flach Garcia Chavez. 
Co-orientador: Prof. Dr. Roberto Almeida Bittencourt. 
Tese (doutorado) – Universidade Federal da Bahia, Instituto de Matemática, Universidade 

Salvador, Universidade Estadual de Feira de Santana, 2014. 
 
1. Engenharia de Software. 2. Evolução de Software. 3. Qualidade de Software. 

4. Engenharia de Releases. 
I. Chavez, Christina. II. Bittencourt, Roberto A. III. Universidade Federal da Bahia, Instituto 
de Matemática. IV. Universidade Salvador. V. Universidade Estadual de Feira de Santana. 
VI. Título. 

 
CDD – 005.1 
CDU – 004.41 

ii



iii





ABSTRACT

Background : Writing source code changes to fix bugs or implement new features is an
important software development task, as it contributes to evolve a software system. Not
all changes are accepted in the first attempt, though. Inappropriate changes can be
rejected because of problems found during code review, automated testing, or manual
testing, possibly resulting in rework.

Our objective is to better understand the statistical association between different
types of rejection—negative code reviews, supplementary commits, reverts, and issue
reopening—to characterize their impacts within a project, and to understand how they
are affected by certain process changes. To this end, this thesis presents an analysis of
three large open source projects developed by the Mozilla Foundation, which underwent
significant changes in their process, such as the adoption of rapid releases.

Methods : To pursue our objective, we analyzed issues and source code commits from
over four years of the projects’ history. We computed metrics on the occurrence of
multiple types of change rejection and measured the time it takes both to submit a
change and to reject inappropriate changes. Furthermore, we validated our findings by
discussing them with Mozilla developers.

Results : We found that techniques used in previous studies to detect inappropriate
changes are imprecise; because of that, we proposed an alternative technique. We deter-
mined that inappropriate changes are a relevant, daily problem, that affects about 18%
of all issues in a project. We also discovered that, under rapid releases, although the
proportion of reverted commits at Mozilla increased, the reverts were performed earlier
in the process.

Keywords: software engineering; software evolution; mining software repositories;
software quality; release engineering.

v





RESUMO

Introdução: A escrita de mudanças no código-fonte para corrigir defeitos ou implementar
novas funcionalidades é uma tarefa importante no desenvolvimento de software, uma vez
que contribui para evoluir um sistema de software. Nem todas as mudanças, no entanto,
são aceitas na primeira tentativa. Mudanças inadequadas podem ser rejeitadas por causa
de problemas encontrados durante a revisão de código, durante o teste automatizado, ou
durante o teste manual, possivelmente resultando em retrabalho.

Nosso objetivo é entender melhor a associação estat́ıstica entre diferentes tipos de
rejeição — revisões de código negativas, commits suplementares, reversão de commits e
reabertura de t́ıquetes —, caracterizar seus impactos em um projeto e entender como elas
são afetadas por certas mudanças de processo. Para este fim, esta tese apresenta uma
análise de três grandes projetos de software livre desenvolvidos pela Mozilla Foundation,
os quais sofreram mudanças significativas no seu processo, como a adoção de lançamentos
frequentes.

Métodos : Para perseguir nosso objetivo, nos baseamos em t́ıquetes e commits de um
peŕıodo de mais de quatro anos do histórico dos projetos. Computamos métricas sobre a
ocorrência de diversos tipos de rejeição de mudanças e medimos o tempo que leva tanto
para submeter uma mudança quanto para rejeitar mudanças inapropriadas. Além disso,
validamos nossos resultados com desenvolvedores da Mozilla.

Resultados : Descobrimos que técnicas usadas em estudos anteriores para detectar
mudanças inadequadas são imprecisas; por isso, propusemos uma técnica alternativa.
Determinamos que mudanças inadequadas são um problema relevante e diário, que afeta
cerca de 18% de todos os t́ıquetes em um projeto. Também descobrimos que, quando a
Mozilla adotou lançamentos frequentes, embora a proporção de commits revertidos tenha
aumentado, as reversões foram realizadas mais cedo no processo.

Palavras-chave: engenharia de software; evolução de software; mineração de repositórios
de software; qualidade de software; engenharia de releases.

vii





CONTENTS

Chapter 1—Introduction 1

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2—Background 5

2.1 Issue Tracking Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Issue Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Version Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Revisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Remote Repositories . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Continuous Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Automated Builds . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Broken Builds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Integration Repository . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Release Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Mozilla’s Code Integration and Release Process . . . . . . . . . . . . . . 12
2.5.1 Rapid Releases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 Release Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.3 Sheriff-Managed Integration Repositories . . . . . . . . . . . . . . 13
2.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Change Lifecycle at Mozilla . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 3—Related Work 21

3.1 Mining Software Repositories . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Code Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ix



x CONTENTS

3.3 Issue Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Change Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 Overview of Approaches to Change Rejection . . . . . . . . . . . 24
3.4.2 Why are Changes Rejected? . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 What Characterizes Rejected Changes? . . . . . . . . . . . . . . . 27
3.4.4 What is the Cost of Rejected Changes? . . . . . . . . . . . . . . . 28

3.5 Rapid Releases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 4—Data and Methods 31

4.1 Goals and Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.1 Research Goal 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Research Goal 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.3 Research Goal 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.4 Research Goal 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Issue Tracking System . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.2 Version Control Repositories . . . . . . . . . . . . . . . . . . . . . 34

4.4 Data Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.1 Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.2 Time Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Events and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5.1 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5.3 Event Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6.1 Construct validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6.2 Internal Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6.3 External Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 5—Results 43

5.1 RG1: Propose and compare techniques to detect change rejection . . . . 43
5.1.1 RQ1.1: How do supplementary commits and reverts compare? . . 43
5.1.2 RQ1.2: How do reopening, late reverts, and late supplementary

commits compare? . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.3 RQ1.3: What is the performance (precision and recall) of existing

techniques? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.4 RQ1.4: How do negative reviews and reverts compare? . . . . . . 46

5.2 RG2: Quantify rework triggered by inappropriate changes . . . . . . . . 47
5.2.1 RQ2.1: What proportion of issues involves rework (rejection rate)? 47
5.2.2 RQ2.2: How often are issues rejected (rejections per day)? . . . . 48



CONTENTS xi

5.2.3 RQ2.3: What is the impact of inappropriate changes on issues’
lifetimes (additional time)? . . . . . . . . . . . . . . . . . . . . . . 49

5.3 RG3: Empirically validate hypotheses about rework . . . . . . . . . . . . 50
5.3.1 RQ3.1: Do appropriate changes take longer to submit? . . . . . . 50
5.3.2 RQ3.2: Are inappropriate changes likely to be released? . . . . . . 51
5.3.3 RQ3.3: Is time to post-rejection submission correlated with latent

time? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.4 RQ3.4: Is time to post-rejection submission correlated with time

to original submission? . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 RG4: Assess the impacts of process changes on rejections . . . . . . . . . 54

5.4.1 RQ4.1: How has the developer workload changed under the new
process? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.2 RQ4.2: How has the rejection rate changed under the new process? 55
5.4.3 RQ4.3: How has the early revert rate changed under the new process? 56
5.4.4 RQ4.4: How has the total additional time caused by inappropriate

changes varied under the new process? . . . . . . . . . . . . . . . 57

Chapter 6—Discussion 59

6.1 RG1: Propose and compare techniques to detect change rejection . . . . 59
6.2 RG2: Quantify rework triggered by inappropriate changes . . . . . . . . 62
6.3 RG3: Empirically validate hypotheses about rework . . . . . . . . . . . . 63
6.4 RG4: Assess the impacts of process changes on rejections . . . . . . . . . 64
6.5 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5.1 Open Source and Proprietary Software . . . . . . . . . . . . . . . 68
6.5.2 What If All Rework Could Be Eliminated? . . . . . . . . . . . . . 68

6.6 Lessons for Practitioners . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.6.1 Reduce Rework by Assessing Process Changes . . . . . . . . . . . 68
6.6.2 Moving Fast Without Breaking Things . . . . . . . . . . . . . . . 69

Chapter 7—Conclusion 71

7.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Appendix A—Emails Exchanged With Mozilla Engineers 75

Appendix B—Related Papers by the Author 99





LIST OF FIGURES

2.1 Bugzilla’s status and transitions. . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Release schedule for Firefox channels. . . . . . . . . . . . . . . . . . . . . 14
2.3 Change’s lifecycle at Mozilla. . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Developer asking for review of his change. . . . . . . . . . . . . . . . . . 16
2.5 Reviewer accepting a change. . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Developer committing a change. . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Sheriff merging a change that passed automated testing. . . . . . . . . . 17
2.8 Developer reverting a commit. . . . . . . . . . . . . . . . . . . . . . . . . 17
2.9 Tester accepting a change. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Data extracted from three commits. . . . . . . . . . . . . . . . . . . . . . 34
4.2 Periods under analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Time-interval metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Venn diagram comparing supplementary commits and reverts. . . . . . . 44
5.2 Venn diagram: reopening, late commits, and late supplementary changes. 45
5.3 Venn diagram of rejection types. . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Mosaic plot showing association between negative reviews and reverts. . . 47
5.5 Distribution of issues’ lifetimes. . . . . . . . . . . . . . . . . . . . . . . . 49
5.6 Time to submit inappropriate and appropriate changes. . . . . . . . . . . 51
5.7 Distribution of original and post-rejection submission metrics. . . . . . . 53
5.8 Developer workload for traditional and rapid releases. . . . . . . . . . . . 54
5.9 Distribution of monthly rejection rates. . . . . . . . . . . . . . . . . . . . 55
5.10 Proportion of early reverts under traditional and rapid releases. . . . . . 56
5.11 Total additional time under both traditional and rapid releases. . . . . . 57

6.1 Two-part commit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Minor follow-up commit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Forces contributing to variations in early and late revert rate. . . . . . . 67

xiii





LIST OF TABLES

2.1 Comparison between traditional and rapid releases. . . . . . . . . . . . . 11

4.1 Minimum and maximum dates of issue creation and commits in the avail-
able data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Precision and recall of reopening and supplementary commits. . . . . . . 46
5.2 Rejection rate for multiple projects and rejection types. . . . . . . . . . . 48
5.3 Number of issues with rejections and average time between rejections in

the rapid release period. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Average individual (per-issue) additional time attributed to inappropriate

changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Total additional time caused by inappropriate changes. . . . . . . . . . . 50
5.6 Mean time to submit appropriate and inappropriate changes. . . . . . . . 51
5.7 Latent time: proportion of inappropriate issues rejected within 12 hours,

24 hours, 1 week, and 12 weeks. . . . . . . . . . . . . . . . . . . . . . . . 52
5.8 Correlation between latent time and post-rejection submission metrics . . 52
5.9 Correlation between original and post-rejection submission metrics. . . . 53
5.10 Ratio between rejection rate for rapid and traditional releases. . . . . . . 55
5.11 Ratio between rejection rate for rapid releases and rejection rate for tradi-

tional releases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xv





Chapter

1
INTRODUCTION

Various software systems that are used daily need to be constantly changed to remain
useful (LEHMAN et al., 1997). Changes are intended to fix problems, add features, or
improve some other aspect of the software, such as performance or ease-of-use.

Every so often, however, some changes are considered inappropriate. For instance, a
change may not fix entirely a bug it was intended to resolve, or it may cause new bugs,
or it may even harm the system’s maintainability. In any case, inappropriate changes
cannot be completely avoided.

In order to detect inappropriate changes, many projects resort to quality control
activities, such as code reviews, automated testing, and manual testing. An inappropriate
change can be rejected at any of these steps. Change rejection triggers rework, since it
requires developers to create a new, improved change, which will undergo further testing.

According to Boehm and Basili (2001), software projects spend 40–50% of their effort
on rework. This estimate takes into account not only rework triggered by inappropriate
changes, but also rework triggered by misunderstood requirements as well. Nonetheless,
it shows that preventing rework can significantly improve productivity.

From the perspective of a researcher or a project manager, measuring rework within
a project can provide insight on the quality of its software development process. A high
rework rate is an indicator of a low-quality process, that could ultimately cause schedule
overruns.

Researchers have relied on data from projects’ issue tracking systems and source code
repositories in order to detect change rejection and measure the resulting rework (SHI-
HAB et al., 2010; JONGYINDEE et al., 2011; PARK et al., 2012). They used this
information to try to predict which changes would be rejected and measure the time
spent on rework.

A recent study (AN; KHOMH; ADAMS, 2014) has found that current approaches to
detect change rejection are imprecise, i.e., they often detect that a change was rejected
when it was not. For instance, Park et al. (2012) assume that, when a developer submits
another change to resolve an issue that was already resolved by a change, it means that

1



2 INTRODUCTION

he is rejecting the first change. However, Le An et al. (2014) found that this is often not
the case; it is often the result of the developer splitting his change in multiple smaller
chunks. The imprecision in detecting change rejection makes it difficult to confidently
estimate the amount of rework in a project.

1.1 OBJECTIVES

The main objective of this thesis is to better understand change rejection and the re-
sulting rework in software projects. To this end we propose an improved technique to
detect change rejection, based on the identification of reverted commits, and then use
it to measure inappropriate changes and rework in projects maintained by the Mozilla
Foundation. We compare metrics before and after Mozilla’s adoption of rapid releases
and integration repositories, two software development practices that altered Mozilla’s
process, in order to assess the impacts of those process changes. These practices are
explained in Chapter 2.

We chose to study Mozilla’s projects for three reasons. First, they have mature,
documented software development processes, which makes them easier to understand.
Second, they make software process data available, such as issue reports and source code,
which is required for our research approach. And third, the projects have large user
bases, and are therefore relevant. In particular, Mozilla’s web browser, Firefox, has an
estimated user base of half a billion users around the world.

1.2 RESEARCH GOALS

The research goals pursued by this thesis are detailed below:
Research Goal 1: Propose and compare techniques to detect change rejection.

There is evidence that current techniques do not precisely detect change rejection (AN;
KHOMH; ADAMS, 2014). We propose a technique based on reverts (see Chapter 2) and
compare it to previously proposed techniques.

Research Goal 2: Quantify rework triggered by inappropriate changes. We aim to
measure rework in terms of its occurrence and in terms of the time they account for in
a project. Those measurements, together with developer feedback, give an idea of how
harmful inappropriate changes are.

Research Goal 3: Empirically validate hypotheses about rework. Since we are
already measuring time intervals, those measurements can also be used to evaluate some
hypotheses. For instance, is it true that rework performed later in the process takes more
effort?

Research Goal 4: Assess the impacts of process changes on rejections. In particu-
lar we study the impact of adopting rapid releases and integration repositories, process
changes introduced at Mozilla, as explained in the next chapter.

1.3 DATA AND METHODS

In order to pursue the previously described goals, we rely on data from three Mozilla
projects: Core, Firefox, and Thunderbird. Those projects were chosen for having the



1.4 MAIN RESULTS 3

highest number of issue reports since 2009, which is a proxy for development activity.
Specifically, we look at issue reports and commit logs, which contain descriptions of

changes to the products’ source code. Together, those two data sources provide infor-
mation about a change’s lifecycle, i.e., the stages through which a change goes through,
from its creation to its integration into a released product, passing through code review,
testing, and, possibly, its rejection and subsequent improvement.

By detecting important events, we can estimate, for each issue (i.e., for each work
item), metrics such as the time needed to submit a source code change to resolve the issue
and whether the change was eventually rejected, triggering rework. In case the change was
rejected, we also determine which activity triggered rejection (i.e., code review, automated
testing, or manual testing), and the time needed to submit an improved change.

These and other metrics provide the basis for investigating questions related to re-
search goals 1, 2, 3, and 4. To interpret metrics, we resort to statistical tests and inter-
views with Mozilla engineers.

1.4 MAIN RESULTS

These are the main results of this thesis:

• we found that previous techniques to detect change rejection from historical data
are imprecise, and proposed a new technique together with evidence that suggests
that it is more precise;

• we found that inappropriate changes are frequent and contribute to longer issue
lifetimes;

• we found that, under Mozilla’s process, inappropriate changes are unlikely to reach
end users;

• we found that, after Mozilla’s process changes, there was a shift towards earlier
rejection.

1.5 OUTLINE

The remaining of this thesis is organized as follows. In Chapter 2, we present software
development concepts related to this thesis. In Chapter 3, we present related work on
mining software repositories, change rejection, and other topics. In Chapter 4, we detail
our research goals by presenting specific research questions, as well as presenting the data
and methods used to answer them. In Chapter 5, we present the quantitative results of
our study. In Chapter 6, we discuss the possible interpretations and implications of the
results. Finally, in Chapter 7, we summarize our contributions and outline directions for
future work.

The thesis also contains two appendices. Appendix A contains emails exchanged with
Mozilla engineers about preliminary results of our research. Appendix B contains our
previous publications directly related to this thesis.





Chapter

2
BACKGROUND

In this chapter, we explain software development tools and practices that are relevant to
understand the development process of many software projects, including Mozilla’s. In
particular, we introduce issue tracking systems and version control systems, and explain
concepts about continuous integration and release models. After that, we portray specifics
of the process followed by projects developed by the Mozilla Foundation and describe the
changes in this process that were introduced in 2011. Finally, we define some concepts
that are used throughout this thesis, and show how they can be observed in Mozilla’s
process.

2.1 ISSUE TRACKING SYSTEMS

In software engineering, an issue is a “unit of work to accomplish an improvement in
a system” (ANH et al., 2011a)1. Issues are most often bugs or features, but they can
also be performance improvements, system restructuring, documentation, changes in the
infrastructure, and generally any work unit that needs to be tracked.

Issue tracking systems are tools that allow users, developers, and other stakeholders to
report and keep track of issues within a project. Each issue report, also known as ticket,
contains fields with information about the issue, such as title, description, priority, the
name of the person who reported it, a progress status, and so on (the exact field set
varies from one issue tracking system to another). Issue reports also contain a history of
all comments written by stakeholders about the issue and the changes in the issue status
and other fields.

1This definition of “issue” is more common in the software development context, and is the one used
throughout this thesis. In the context of IT service management, it has a different meaning, being
synonymous with incident, i.e., an interruption or degradation of a service, which is different from the
meaning intended in this thesis.

5



6 BACKGROUND

2.1.1 Terminology

Because issue tracking systems are generic enough to help keep track of any work, there
is often intersection with bug tracking systems and project management systems. In
practice, many tools implement aspects of issue, bug, and project management, so it is
hard to classify them in one single category.

For instance, Bugzilla, originally a bug tracking system, now describes itself as “server
software designed to help you manage software development.” Nonetheless, in Bugzilla, a
unit of work is still called a bug report, which can be confusing (ANTONIOL et al., 2008).
A previous study on five open source projects showed that about 33% of all bug reports
do not describe bugs; they refer, instead, to feature requests, requests for performance
improvements, and other maintenance tasks (HERZIG; JUST; ZELLER, 2013).

For example, Mozilla Firefox’s bug report #864250 is a request by a QA engineer for
the creation of a test case; bug report #1096140 is for cleaning up unused source code;
bug report #1081322 is for adding a field to a form. Although Bugzilla allows classifying
a bug report as a request for enhancement, none of these three bugs was classified as
such. In fact, in the data set we analyzed, less than 3% of all bug reports were classified
as enhancements, which shows that the Firefox team does not systematically differentiate
between corrective maintenance and other types of tasks in their bug reports.

Although in this thesis we analyze bug reports from Bugzilla, we chose to call them
“issue reports,” a neutral term, to avoid confusion about their contents.

2.1.2 Issue Reports

In Bugzilla, people can report issues and then update issue reports with information
regarding the issue and the process of resolving the issue, either by uploading files (such
as screenshots, trace logs, and patches) or by commenting and updating issue report
fields. Each issue report has a status field, which can take the values UNCONFIRMED, NEW,
ASSIGNED, RESOLVED, VERIFIED, and REOPENED.

Figure 2.1 shows typical issue status and their transitions. An issue starts with sta-
tus UNCONFIRMED, if reported by a regular user, or NEW, if reported by a trusted user.
After that, the issue may be ASSIGNED to a developer, and then RESOLVED. After success-
ful manual testing, the status is changed to VERIFIED. Any issue marked RESOLVED or
VERIFIED is considered closed and may be REOPENED if the initial solution was deemed
inappropriate, so it can be RESOLVED correctly. It should be noted that projects outside
Mozilla that also use Bugzilla may give different interpretations to each status (SOUZA;
CHAVEZ, 2012).

For RESOLVED issues, a resolution must be chosen among FIXED, INVALID, WONTFIX,
DUPLICATE, WORKFORME, or INCOMPLETE. Although the actual interpretation of each reso-
lution is project-dependent, Bugzilla’s documentation (BUGZILLA, 2015) proposes the
following interpretations, which are followed by Mozilla’s projects:

• FIXED: a solution for the issue was committed to a source code repository and
tested;



2.2 VERSION CONTROL SYSTEMS 7

UNCONFIRMED

NEW ASSIGNED RESOLVED
resolution:
FIXED,
INVALID,
WONTFIX,
DUPLICATE,
WORKSFORME,
INCOMPLETEVERIFIEDREOPENED

Open issue report Closed issue report

Figure 2.1: Bugzilla’s status and transitions.

• INVALID: the report intends to describe a bug, but the team considered it not to
be a bug;

• WONTFIX: the issue is a bug which developers have no intention of resolving;

• DUPLICATE: the report is a duplicate of another report;

• WORKSFORME: the issue is a bug that developers could not reproduce;

• INCOMPLETE: the report provides insufficient information about a problem.

2.1.3 Summary

In the context of software development, issues represent units of work, such as fixing
bugs and implementing new features. Issue tracking systems allow people in a project to
discuss issues and track updates to their status. Some systems refer to issues as bugs.

2.2 VERSION CONTROL SYSTEMS

Version control systems “record changes to a file or set of files over time” (CHACON,
2009). They are often used in software development to allow multiple developers to evolve
a code base.

Version control systems have evolved from local to centralized, and then to distributed.
A local version control system, such as RCS, manages multiples versions of files in a local
file system. Centralized version control systems, such as CVS and Subversion, keep files
in a central versioned repository accessed by developers, who should check out a copy of
a specific version of the files to their computers before modifying them. In a distributed
version control system, such as Git and Mercurial, each developer has a full copy of the
repository and can share changes from one repository to the other; although not strictly
needed, there is usually a central repository off which developers base their work.

A complete explanation of concepts and mechanisms of version control systems is
beyond the scope of this thesis. For this reason, we focus on key concepts from distributed
version control systems.



8 BACKGROUND

2.2.1 Revisions

A repository is a list of revisions of a set of files. Each revision (also called change set
or version) records the contents of the files in a specific instant in time. Revisions are
uniquely identified by a hash number and are explicitly created when a user performs a
commit operation after changing the repository’s files (for this reason, people also refer
to revisions as commits). When performing a commit, the user must write a message
that describes the changes, and this message becomes associated with the revision.

2.2.2 Remote Repositories

When collaborating on a project, a user should first clone its remote repository, an
operation that creates a copy of the repository in their local file system. The commit
operation creates revisions in the local repository; to send them to the remote repository,
the user should perform a push. Because other users may also have pushed changes to
the remote repository, the user should pull those changes to their local repository before
performing a push.

2.2.3 Branches

Often a project needs to evolve independently two or more copies of its files. For instance,
after a team releases a version of its software, it can start to work on the next version,
but may need to keep fixing bugs in the old version. In this case, the repository is split
into two branches, or trees, so that changes in one branch are isolated from changes in
the other one. Eventually the changes made to one branch may need to be applied to
the other one; in this case, we say that one branch is merged into the other one.

In the context of distributed version control systems, creating a branch is conceptually
similar to cloning a repository, as in both cases the code base can be evolved in parallel,
and in both cases the changes can be merged. The decision to create a branch or a clone
is driven by technical details and user preference.

2.2.4 Summary

Version control systems record changes to a set of files in a project that are explicitly com-
mitted to a repository. Commits are associated with messages that explain the changes.
A project’s files can be in multiple repositories, and commits can be merged from one to
another.

2.3 CONTINUOUS INTEGRATION

In a large software project, developers coordinate their work using issue tracking systems
and evolve together a code base in a central repository (also known as mainline, head,
or master) with the help of a version control system (FOWLER; FOEMMEL, 2005).
Because all developers have a local copy of the repository, they can work on an issue in
isolation, by making changes to their local repository before pushing them to the central
repository. This isolation is useful to avoid sharing incomplete changes among developers.



2.3 CONTINUOUS INTEGRATION 9

If developers take a long time to integrate their changes, though, the individual reposi-
tories may have significantly diverged, to the point that there are conflicting changes. De-
velopers must resolve conflicts manually before integrating the changes, a time-consuming
and error-prone task. Longer periods between integrations also mean that, when some-
thing goes wrong, developers have to inspect many changes to try to find the cause.

Continuous integration (CI) is the practice of integrating developers’ changes to the
central repository multiple times a day. The objective is to reduce conflicts and get
feedback on integration problems earlier, when the cost to solve them is lower (FOWLER;
FOEMMEL, 2005).

Integrating daily, however, also means that there is no time to comprehensively test
a change before integrating it into the central repository. As a result, the repository may
occasionally receive inappropriate changes that can slow down other developers.

2.3.1 Automated Builds

In order to detect inappropriate changes early in the process, continuous integration
advocates automated building of the code in the central repository, which consists of
compiling the code (possibly for multiple platforms) and running automated tests. The
automated build is performed by a continuous integration server (CI server) upon every
change in the central repository, if possible, or as frequently as feasible given the available
computing resources.

The CI server reports each build as successful or failing, depending on the outcome of
the compilation and of the automated tests. We say that the central repository is broken
when the build fails, or stable when the build succeeds. The central repository should
accommodate frequent changes, but should also be stable enough to allow developers to
base their work off it.

2.3.2 Broken Builds

To prevent breaking the repository, developers can run private builds, i.e., automated
builds of their working copy, before integrating their changes. Because a complete build
may take a long time to complete, developers can choose to build only on a subset of the
platforms, or to run only a subset of the automated tests, although this practice increases
the risk of problems not being detected until a full build is performed.

Even if developers always run private builds, their changes may break the central
repository, be it because of differences in the developers’ machines and the CI server, or
because of interactions between changes. The highest priority, in this case, is to make
the repository stable again as soon as possible.

If the cause of the breakage is simple, one can quickly write a fix, push it to the
repository, and wait for the results of the new build, which should now be successful.
This is called a roll forward or a follow-up change. However, often the quickest way to
fix a broken repository is to simply revert (also called back out or roll back) the changes
introduced since the last stable build. The problem can then be investigated in a local
copy of the repository, while the central repository is stable and prepared to receive
changes from other developers.



10 BACKGROUND

2.3.3 Integration Repository

If the central repository of a project breaks often, causing trouble to developers, the
project can adopt an integration repository (also called pending head or staging reposi-
tory). The integration repository is either a clone or a branch of the central repository
(the distinction between a clone and a branch is not relevant in this case).

Within this model, developers still pull changes from the central repository, but they
now push their changes to the integration repository. Periodically, the CI server builds
off the integration repository and merges it to the central repository only if the build is
successful. Breaking the integration repository is less of a problem, since developers still
base their changes off the central repository, which is kept more stable.

2.3.4 Summary

In continuous integration, developers pull changes from and push changes to a central
repository daily. A continuous integration server automatically builds every revision of
the central repository, which includes compiling the code and running automated tests. A
central repository that is often broken (i.e., that results in failed builds) harms developers’
productivity. To avoid frequent breakage, developers can push changes to a separate
integration repository, and have these changes merged into the central repository only
after a successful build.

2.4 RELEASE CYCLES

The release cycle includes all stages from the initial development of a new version of
a product until its release to users, including the release of minor versions containing
bug fixes. The release cycle comprises multiple continuous integration cycles (change,
integrate, build) and involves the coordination of multiple teams within a project.

A release model is a simplified description of a release process, i.e., of the activities
performed in a release cycle. In this section, we compare two release models, tradi-
tional releases and rapid releases, by explaining in which aspects they differ. The main
differences are highlighted in Table 2.1.

First, the two release models differ in the instant of release, which can be feature-based
or time-based. Traditional releases are feature-based: there is a set of planned features
that must be implemented for the software to be released, and the time it takes for that
is variable. Under rapid releases, which are time-based, new versions of the software are
released in fixed time intervals, with whatever features are ready when the release date
comes.

Under traditional releases, a version with new features is released about one year or
more after the previous version. Under rapid releases, this time is cut to a few weeks or
months, usually with the help of continuous integration, since it makes code integration
easier.

Another aspect to consider in a release model is the maintenance of old releases. Under
traditional releases, new features are implemented for the next release only, but bug fixes
are back ported to older releases. This approach guarantees that users of old version will



2.4 RELEASE CYCLES 11

Table 2.1: Comparison between traditional and rapid releases.

Traditional Releases Rapid Releases

Release criteria feature-based time-based

Time between releases a year or more weeks or few months

New features next major release next rapid release

Supported versions many one or two

Bug fixes bug fix release next rapid release

Feature toggles no yes

get bug fixes in a timely manner, but requires the organization to support two or more
versions at the same time. Under rapid releases, since releases are more frequent and the
update process is smoother, it is usual to support only the latest version. Sometimes,
there is also an extend support release, which is a version that receives only bug fixes
and security updates for an extended period of time, usually intended for corporate
environments which require stable software.

In both release models there is a stabilization period, which occurs just before the
release. Usually during this period there is a feature freeze, during which no new features
are admitted in the branch or repository that will be used for the release.

In a time-based release process, such as rapid releases, incomplete features need to
be disabled during stabilization. To make that process easier, developers can implement
a conditional rendering logic on user interface elements that allow users to access a fea-
ture (FOWLER, 2010). Those elements would be rendered or not depending on the value
of a configuration variable. This technique is called feature toggle, feature flag, or feature
switch. During the stabilization period, should the feature be disabled, it is just a matter
of changing a configuration variable.

The rapid release model allows the organization to deliver new features to users ear-
lier. Analogously to continuous integration, that reduces the risk of code integration by
integrating often, rapid releases reduce the risk of release by releasing often. Traditional
releases, on the other hand, may be appropriate when stability is more important than
new features.

2.4.1 Summary

The traditional release model consists of feature-based releases separated by several
months (usually 12 months or more), with bug-fix releases in-between. Older versions
are updated with bug fixes. The rapid release model, on the other hand, consists of
time-based releases separated by weeks (typically 6 weeks to 3 months). Usually only the
latest version is supported, or sometimes the latest and an extended support release.



12 BACKGROUND

2.5 MOZILLA’S CODE INTEGRATION AND RELEASE PROCESS

Netscape was a company founded in 1994 that created a suite of applications for the
Internet, such as the Netscape Navigator web browser. In 1998, it released an open
source version of its applications and created a project, Mozilla, to coordinate their de-
velopment (BAKER, 2008). Netscape was eventually disbanded, while Mozilla continued
existing as a foundation, with many Netscape’s ex-employees.

Back in 1997, Netscape already had a continuous integration server, running the soft-
ware Tinderbox, developed in-house (O’DUINN, 2014). The Mozilla Foundation inherited
the software and the process, and therefore has been using continuous integration from
the start.

Mozilla also hosts the so-called Try server, a CI server that developers can use to run
private builds of their local changes2. This way, developers can “try” their changes on a
subset of platforms and test suites before pushing the changes to the central repository.

As of 2009, a build of Mozilla-Central, the central repository for Firefox and core
libraries, took about 4 hours to complete: 1.5 hours to compile the code for all platforms,
plus 2.5 hours to run all unit tests. Developers were expected to be available for the
next 4 hours after pushing changes, in order to watch the results of the build and to take
the necessary actions if the build failed, for instance, reverting their own commit. Build
times and developer responsibilities are available at Mozilla’s wiki (MOZILLA, 2015).

Before pushing a change to the central repository, a developer must submit the change
to be reviewed by the module owner, which is the person responsible for the piece of code
that was changed3. The module owner, in the role of reviewer, analyzes the code’s design
and coding style, checks if it resolves the problem, and comments on overall improvements
that can be made4.

The review can be positive or negative. A negative review should explain how the
patch could be improved to get a positive review. Only after a patch gets a positive
review can it be pushed to the code repository.

In 2011, Mozilla projects underwent significant changes in both its continuous inte-
gration and its release process. Those changes are described in the next sections.

2.5.1 Rapid Releases

Before March 2011, Firefox had been developed according to a traditional release schedule:
features for the upcoming version were developed along with bug fixes and minor updates
for the current stable release. The release was feature-based: major features would only
be delivered to users with the release of a major version, which occurred when the planned
features were implemented and tested. In practice, a new major version used to take 12
to 18 months to be released5.

In 2008, Google entered the web browser market, when it launched Google Chrome,
Firefox’s direct competitor. In July, 2010, Google announced that it would release a

2See 〈https://wiki.mozilla.org/ReleaseEngineering/TryServer〉.
3See 〈https://developer.mozilla.org/en-US/docs/Mozilla/Developer guide/How to Submit a Patch〉.
4See 〈https://developer.mozilla.org/en/docs/Code Review FAQ〉.
5The list of release dates can be found at 〈https://wiki.mozilla.org/Releases〉.



2.5 MOZILLA’S CODE INTEGRATION AND RELEASE PROCESS 13

major version every six weeks, effectively getting features to its users earlier and making
the release schedule more predictable (LAFORGE, 2010).

Partly because of competition with Google Chrome (JONO, 2012), Mozilla decided to
move to a rapid release model in which new versions would be released every six weeks.
The first rapid release cycle, Firefox 5, started in March 22, 2011.

2.5.2 Release Channels

Together with the move to rapid releases, Mozilla started using four channels to dis-
tribute versions of Firefox and related products: central (or nightly), aurora, beta, and
release. Each channel contains a version of Firefox that is more stable than the version
in the former channel, and thus reaches a wider user base. Central is aimed at Mozilla
contributors; aurora and beta are aimed at web developers and early adopters; release
contains a version that was tested in aurora and beta and is ready to be installed by all
users.

Each release channel has a corresponding source code repository. The repositories are
called Mozilla-Central (or m-c), Mozilla-Aurora (m-a), Mozilla-Beta (m-b), and Mozilla-
Release (m-r). As a general rule, developers push their patches with new features to m-c.
Every six weeks, the central repository is merged into the aurora repository. No new
features are admitted in aurora; during the next six weeks, the strings are localized to
multiple languages and the code is stabilized by means of bug fixes and feature toggling.
Then, aurora is merged into beta, where it is stabilized for six more weeks, this time with
a larger user base. After that period, the code is merged into the release repository and
becomes available as a stable version. Hence, a new feature can be delivered to users in
12 to 18 weeks, as changes flow through nightly, aurora, and beta channels.

In order to release a new version every 6 weeks, while a version is been stabilized, the
next one is already being developed. Every 6 weeks there is the merge day, when changes
in central are merged into aurora, changes in aurora are merged into beta, and changes
in beta become part of the next release.

Figure 2.2 shows a simplified schedule for the release of versions 8, 9, 10, and 11. It
can be seen that, in the fourth 6-week cycle, Firefox 8 is released, Firefox 9 and 10 are
being stabilized in beta and aurora, respectively, and Firefox 11 is being developed in
central. Firefox 9 is released in the next release cycle, when Firefox 10 becomes beta and
Firefox 11 starts being stabilized in aurora.

2.5.3 Sheriff-Managed Integration Repositories

In June 8, 2011, a little more than two months after the adoption of rapid releases, Mozilla
introduced integration repositories in the process. With this transformation, developers
stopped committing directly to central, and started to commit to integration repositories
instead, such as Mozilla-Inbound. The code on integration repositories is built and run
against automated tests before being merged into central.

The merging of Mozilla-Inbound to Mozilla-Central is not performed by the developers
who commit the patches; instead, it is performed by designated developers called build
sheriffs, or tree sheriffs. Sheriffs watch the build and are responsible for reverting commits



14 BACKGROUND

Firefox 8: centralFirefox8 Firefox 8: aurora Firefox 8: beta • Firefox 8: release

Firefox 9: central Firefox 9: aurora Firefox 9: betaFirefox9 • Firefox 9: release

Firefox 10: central Firefox 10: aurora Firefox 10: beta • Firefox 10: releaseFirefox10

Firefox 11: central Firefox 11: aurora Firefox 11: beta • Firefox 11: releaseFirefox11

6weeks 6weeks 6weeks 6weeks 6weeks 6weeks

Figure 2.2: Release schedule for Firefox channels.

that break the build in order to stabilize Mozilla-Inbound before merging its commits into
Mozilla-Central.

With integration repositories, only code that passes build and automated tests is
merged into Mozilla-Central, keeping it more stable. Furthermore, because of sheriffs,
developers do not need to watch builds after they push changes, and neither need to
revert commits themselves.

2.5.4 Summary

Mozilla follows a continuous integration process with a code review step before automated
builds. In 2011, it adopted rapid releases and integration repositories managed by sheriffs.
In order to stabilize a version before releasing it officially, Mozilla publishes pre-release
versions called aurora and beta intended for smaller audiences.

2.6 CHANGE LIFECYCLE AT MOZILLA

In this section, we explain the lifecycle of a change by showing how Mozilla’s engineers
interact with each other, with issue tracking systems, and with version control systems,
and which data items are logged as a result. This explanation helps identify how to detect
important events that can be used to compute metrics related to change rejection and
rework.

The lifecycle is outlined in Figure 2.3. It shows that all changes that become part of
a release undergo peer review, automated testing, and manual testing. In the following
paragraphs, each step in the process is illustrated with an actual issue report from a
Mozilla project. For privacy reasons, developers’ names are replaced by their roles in the
issue (e.g., Developer, Reviewer).

When a developer resolves an issue, he attaches the source code patch to the corre-
sponding issue report in Bugzilla and asks a specific colleague to review it (setting the
review? flag). Figure 2.4 shows an example from issue #787078, took from Firefox for
Android. In this this issue, Developer attaches his patch to Bugzilla and asks his col-
league Reviewer to review it. Figure 2.5 shows Reviewer’s response, altering the review?

flag to review+, signaling his acceptance of Developer’s change. Had the change been
rejected, Reviewer would alter the flag to review- and Developer would have to attach



2.6 CHANGE LIFECYCLE AT MOZILLA 15

Figure 2.3: Change’s lifecycle at Mozilla.

a new patch to be reviewed.

Because of the positive review, Developer pushes the change to the Mozilla-Inbound
repository. The change can be viewed in Mozilla-Inbound’s commit log, as shown in
Figure 2.6. The commit message references the issue it resolves (“Bug 787078”) and the
user who reviewed the change (“r=reviewer”).

Changes in Mozilla-Inbound undergo automated testing. If all tests pass, the build
sheriff merges the patch into Mozilla-Central and changes the issue status to RESOLVED

and the issue resolution to FIXED. This is in fact what happened with issue 787078, as
shown in Figure 2.7. Had the change broken the build, the sheriff would have reverted
the change and notified the developer.

In the case of issue 787078, the developer himself discovers a problem with his change.
As a result, he reverts his commit, as shown in Figure 2.8, and restarts the process: he
writes an improved change, Reviewer reviews it, he pushes the change to Mozilla-Inbound,
where it passes the tests, and finally the sheriff merges the change into central.

Eventually, a tester takes a nightly build (built from Mozilla-Central) and verifies, by
manually testing the build, whether the issue was indeed resolved. If that is the case, he
changes the issue’s status to VERIFIED, as shown in Figure 2.9. Otherwise, he changes
the issue’s status to REOPENED and the process starts from the beginning.



16 BACKGROUND

Figure 2.4: Developer asking for review of his change.

Figure 2.5: Reviewer accepting a change.

Commit hooks. Mozilla’s developers follow conventions when writing commit mes-
sages. As illustrated in previous examples, commits that resolve an issue are associated
with a message that starts with the word “bug” followed by the issue identifier. Besides
commits that resolve an issue, there are also commits that revert inappropriate commits
and commits that merge changes from one repository to the other.

Since November 2011, Mozilla enforces the commit message conventions using a Mer-
curial hook implemented in Mozilla-Central and in all repositories that merge into it. The
hook prevents developers from pushing any commits that do not follow the conventions.
Mozilla’s wiki explains the rules for allowed messages (MOZILLA, 2015):

• Commit messages containing “bug” or “b=” followed by a bug number

• Commit messages containing “no bug” (please use this sparingly)

• Commit message indicating backout of a given 12+ digit changeset ID, starting with

changeset: 43dd8252f52d

user: Developer

date: Thu Aug 30 16:28:39 2012 +0100

summary: Bug 787078 - Load Reader UI on pageshow instead of

DOMContentLoaded (r=reviewer)

Figure 2.6: Developer committing a change.



2.6 CHANGE LIFECYCLE AT MOZILLA 17

Figure 2.7: Sheriff merging a change that passed automated testing.

changeset: 0a93ae68184e

user: Developer

date: Fri Aug 31 15:18:19 2012 +0100

summary: Bug 787078 - Backout 43dd8252f52d

Figure 2.8: Developer reverting a commit.

(back out—backing out—backed out—backout)( of)? (rev—changeset—cset)s? [0-
9a-f]12

• Commit messages that start with “merge” or “merging” and are actually for a
merge changeset.

As expected, the commits shown in Figure 2.6 and in Figure 2.8 conform to the rules.
Thunderbird. The process described before is valid for Core, Firefox, and other

projects. The process for Thunderbird is basically the same, with a few differences. Al-
though Thunderbird is released under the same schedule of other Mozilla products, it did
not adopt sheriff-managed integration repositories; thus, commits are directly pushed to

Figure 2.9: Tester accepting a change.



18 BACKGROUND

the central repository and reverts are performed by all developers. Also, it is developed
under a different repository, Comm-Central, which does not implement the same commit
hooks used to enforce commit message conventions. Therefore, although Thunderbird
developers tend to use the same conventions when writing commit messages, those con-
ventions are not enforced.

2.7 CONCEPTS

After explaining basic concepts and tools, we can define concepts such as change, sub-
mission, rejection and rework, which are central to this thesis. We define change as
any modification to the source code of a product that was submitted by its author as a
solution to an issue.

Change submission and evaluation. We consider as change submission the sub-
mission of a change to be evaluated, i.e., to be code reviewed, to be automatically built
(compiled and tested), or to be manually tested. At Mozilla, those submissions are per-
formed by, respectively, requesting a code review on Bugzilla, pushing a commit to a
remote repository, or closing the issue.

Change rejection. Change rejection is the manifestation by a person that a change
is inappropriate. People indicate that a change is inappropriate by giving it a negative
review, by reverting it from a code repository, or by reopening an issue report that
was closed because of the change. Negative reviews, reverts, and reopenings are called
rejection types. At Mozilla, the review process occurs before the change is committed;
thus, negative reviews occur only before the corresponding commits. Reverts, on the other
hand, can be performed only after a change is committed. We classify reverts as early
reverts—when they occur before the corresponding issue is closed—or late reverts—when
they occur after the issue is closed. Issue reopening, of course, can only be performed
after an issue is closed.

Original and supplementary submissions. We define original submission as
the first submission of a specific type for a specific issue. For instance, at Mozilla,
every closed issue that required a source code change has an original review request,
an original commit, and an original issue closing. Any subsequent submissions are called
supplementary submissions. Supplementary submission may come after a rejection or
not.

Rework. Change rejection triggers rework, which is the act of improving a change
that was rejected or the act of evaluating the improved change after having evaluated the
corresponding original change. In other words, rework means to perform additional work
on an issue that was believed to be already resolved. For instance, when a change sub-
mitted to code review receives a negative review, there is rework for both the developer,
who will work one more time on the change to resolve the issue, and for the reviewer,
who will have to perform an additional code review.

Inappropriate change. It should be noted that, in this work, we do not attempt to
theoretically define the concept of inappropriate change. Instead, we adopt an operational
definition: a change is inappropriate if it was explicitly rejected (through negative reviews,
reverts, or reopenings). The reason for a rejection can be diverse: maybe the change



2.7 CONCEPTS 19

introduced a bug, or failed to cover corner cases, or did not follow coding conventions. In
some cases, it is hard to determine if a change was rejected: for instance, an issue may
be reopened because of an inappropriate change or because of problems in the process
(see Chapter 3).

Reverts as change rejection. Based on the observation of Mozilla’s process data,
we propose a new technique for detecting change rejection, based on reverted commits.
As far as we know, this is the first study to use reverts to detect change rejection.

Commit reverts are easy to detect at Mozilla for two reasons. First, Mozilla adopts
continuous integration, which encourages reverting commits that break the build instead
of fixing the breakage by follow-up commits. This became even truer after build sheriffs
started to watch the build, since they revert commits right away, without trying to fix
the problem with follow-up commits.

Second, developers follow conventions when writing commit messages; in particular,
they identify reverts by writing the word “backout” (or one of its variations, such as
“back out” or “backing out”). Currently, a commit hook enforces those conventions in
some projects, so we can expect a high conformance from developers.

Therefore, at Mozilla, reverts accurately represent the concept of change rejection
for changes that were already committed. In other projects and organizations, reverting
commits may not be a common practice.





Chapter

3
RELATED WORK

In this thesis, we analyze data from open source projects in order to measure rework and
ultimately determine its relationship with certain software development practices adopted
by the Mozilla Foundation. In this chapter, we review related work about mining software
repositories, code reviews, change rejection, issue lifetime, and release engineering.

3.1 MINING SOFTWARE REPOSITORIES

Software repositories are collections of artifacts that are produced and archived during the
evolution of a software system (KAGDI; COLLARD; MALETIC, 2007). We have already
presented two types of software repositories, issue tracking systems and version control
systems. Other software repositories include mailing lists, forums, and chat rooms.

The research field of mining software repositories leverages the historical record of
software repositories in order to extract useful information for the future development of
a specific software system (HASSAN, 2008) or even to validate hypotheses about software
development in general.

Having access to software repositories is critical to research in this field, which tradi-
tionally relied on cooperation with large companies. Currently, with the popularization
of open source systems, any researcher can have instant access to software repositories of
large projects, developed by distributed teams, and with a large user base.

The availability of software repositories contributed to popularize mining software
repositories as an approach for software engineering research. The Mining Software
Repositories (MSR) conference is held annually since 2004.

The following are some research areas that rely on mining software repositories:

• Defect prediction. The objective of defect prediction is to predict the occur-
rence or the number of defects that will be found in each component of a sys-
tem (D’AMBROS; LANZA; ROBBES, 2010). Techniques involve the analysis of
the source code of a version of a software system (BASILI; BRIAND; MELO, 1996;

21



22 RELATED WORK

MARCUS; POSHYVANYK; FERENC, 2008) or the analysis of historical data from
version control systems (MOSER; PEDRYCZ; SUCCI, 2008; NAGAPPAN et al.,
2010) and issue tracking systems (KIM et al., 2007).

• Mapping between defects and source code. To validate defect prediction
techniques it is necessary to have a reference system for which the number of de-
fects in each component is known. To discover this information, it is necessary
to map each defect reported on a bug tracking system to a source code compo-
nent. The state-of-the-art of automatic mapping consists of finding commits that
resolve a specific bug (usually, these commits refer to the bug report identifier in
their messages). Then, one can conclude that the components modified by the
commit contained the defect being resolved (FISCHER; PINZGER; GALL, 2003;
ŚLIWERSKI; ZIMMERMANN; ZELLER, 2005; EADDY et al., 2008; D’AMBROS;
LANZA; ROBBES, 2010).

• Bias in mappings between defects and source code. The effectiveness of
automatic mappings depends on the programmers’ conforming to the convention
of referencing bug report identifiers in their commit messages. In practice, only
a sample of all bug reports can be mapped (AYARI et al., 2007), and researchers
have shown that this sample is biased (BIRD et al., 2009; NGUYEN; ADAMS;
HASSAN, 2010). For instance, severe bugs are more prevalent in the sample than
in the population of all bug reports. This bias diminishes the effectiveness of defect
prediction algorithms and any other analysis that depends on the mapping. There
are three suggestions to mitigate the problem (BIRD et al., 2009): seek more reliable
data sets, map the defects manually, and train models in a sample of data whose
distribution of features resembles closely that of the population.

• Challenges in mining issue tracking systems. Not all the coordination be-
tween developers related to resolving an issue is recorded precisely in the issue
tracking system; the assignee of an issue report does not always participates in the
resolution of defect (ARANDA; VENOLIA, 2009). For example, it may happen
that an issue has been resolved before the creation of its report, or that the devel-
oper marks the issue as resolved long after its resolution. Extra care should also be
taken with noise in the data and bulk edits (ARANDA; VENOLIA, 2009; SOUZA;
CHAVEZ; BITTENCOURT, 2013a, 2013b). Another problem is that not all bug
reports correspond to corrective maintenance; some correspond to perfective or
preventive maintenance, discussions on architecture and other improvements (AN-
TONIOL et al., 2008; HERZIG; JUST; ZELLER, 2013).

3.2 CODE REVIEWS

Bird et al. (2007) developed an algorithm to detect patches in email messages and de-
termine when such patches were applied to a code base. In their analysis of three open
source projects—Apache, Python, and PostgreSQL—they found that between 25% and
49% of all submitted patches were applied without modifications to the code base. The



3.3 ISSUE LIFETIME 23

remaining patches were either rejected or applied with modifications (their algorithm
could not tell the two cases apart).

Rigby et al. (2011, 2014) studied the peer review process of several open source
projects. They identified two styles of review processes: review-then-commit (the most
common, adopted by Mozilla), and commit-then-review. They characterized reviews ac-
cording to their frequency, the participation of reviewers, among other dimensions.

Nurolahzade et al. (2009) inspected a random sample of 112 bug reports from Firefox.
They identified recurrent patterns in the behavior of contributors and reviewers. For
example, some contributors submit work-in-progress patches, and some reviewers avoid
explicitly rejecting patches (what Jeong et al. calls “gentle rejection”). They also make
a distinction between reviews conducted by module owners (i.e., developers responsible
for specific modules in the software), who are concerned with long-term maintainability,
and those conducted by other peers, who are usually more interested in functionality and
usability.

3.3 ISSUE LIFETIME

A relevant information that can be extracted from issue tracking systems is each issue’s
lifetime, measured as the time between its creation and its resolution. A long lifetime
is an indicator that the system is difficult to maintain (KIM; WHITEHEAD JR., 2006)
and may even delay the release of new versions.

Several approaches have been employed to predict issue lifetime. One approach in-
volves the use of data mining algorithms (PANJER, 2007) and regressions (ANBALA-
GAN; VOUK, 2009) applied to attributes from issue reports. Another approach is to
use similarity metrics to predict the lifetime of an issue based on similar issues that were
already resolved. The similarity can be measured using textual features in issues’ titles
and descriptions (WEISS et al., 2007) or grouping tickets with similar attributes (such
as severity and component) through a neural network (ZENG; RINE, 2004).

Some conclusions found in studies about issue lifetime:

• more severe bugs are resolved faster (PANJER, 2007; HOOIMEIJER; WEIMER,
2007; BOUGIE et al., 2010; ZHANG et al., 2012);

• issue reports with easier to read descriptions are resolved faster (HOOIMEIJER;
WEIMER, 2007);

• issue reports with many comments take more time to be resolved (PANJER, 2007;
HOOIMEIJER; WEIMER, 2007; ANH et al., 2011b);

• the higher the number of participants in an issue report, the longer the time-to-
resolve (ANBALAGAN; VOUK, 2009; ANH et al., 2011b);

• the past performance of a developer is a good predictor of the time he/she will take
to resolve an issue (ANH et al., 2011b);

• long-lived bugs are characterized by specific source code constructs (CANFORA et
al., 2011);



24 RELATED WORK

• issues that take more time to be assigned to a developer are resolved faster (after
they are assigned) (OHIRA et al., 2012);

• when an issue is reported by a person, triaged by a different person, and resolved
by a third person, the time-to-resolve is twice as long (OHIRA et al., 2012);

• other attributes that help predicting the time-to-resolve of an issue include its
category (BOUGIE et al., 2010), the month when the issue was reported, the as-
signed developer (GIGER; PINZGER; GALL, 2010), and the reporter (GIGER;
PINZGER; GALL, 2010) (although existing studies diverge on the relevance of the
latter (BHATTACHARYA; NEAMTIU, 2011)).

3.4 CHANGE REJECTION

To the best of our knowledge, no other author has studied the problem of change rejection
as broadly as defined in this thesis. However, researchers have studied sub-problems
and related problems, described in the literature as rejection of patches during code
review, supplementary changes, and issue reopening. These problems have been studied
with many goals, such as eliciting the cause of bug reopening, predicting rejection, and
assessing the costs associated with rejections.

3.4.1 Overview of Approaches to Change Rejection

Rejection of Patches During Code Review. Jeong et al. (2009) studied the accep-
tance of bug fixes submitted to peer code review in Mozilla Firefox and Mozilla Core.
They found that only 50% of all review requests were explicitly accepted or rejected. The
other half remained in an “open state”, which may indicate a “gentle rejection”, a lack of
interest from reviewers, or that the initial bug fix was superseded by an improved version
even before the reviewer had the opportunity to look at the first version.

Supplementary Changes. Supplementary changes are changes intended to resolve
an issue that was already linked to a change (PARK et al., 2012). Their existence
may indicate that the original change was inappropriate. We say that an issue has
supplementary changes if it is associated with two or more commits.

While multiple commits may represent multiple attempts to resolve an issue, some-
times they are the result of a developer splitting a change into multiple small changes in
order to facilitate peer review.

Issue Reopening. Issue reopening is the act of changing the status of an issue report
from a closed state to an open state. In Bugzilla, this transition is represented by the
REOPENED status.

The literature uses the term “bug reopening” to refer to this phenomenon. We use
“issue reopening” instead because many projects analyzed in the literature do not make
a distinction between bugs, feature requests, and other types of maintenance.

To better understand issue reopening, the reader should remember that an issue can
be closed for many reasons. In the case of Bugzilla, the reason is documented in the
resolution field of the issue report (see Figure 2.1). The resolutions can be separated in



3.4 CHANGE REJECTION 25

two groups:

• INVALID, WONTFIX, DUPLICATE, WORKSFORME, INCOMPLETE: there is a problem with
the issue report found during issue triaging;

• FIXED: there is a problem with the product, and it was solved by a source code
change.

The first group is related to issue triaging; the second is related to changing the
source code. Reopening an issue report that was closed during triaging means that the
triaging was ineffective or that new information made the team reconsider their first
evaluation. Reopening a FIXED issue report, on the other hand, usually means that the
source code change was considered inappropriate, requiring the developer to write an
improved change. Only the second group fits our definition of change rejection.

Some authors investigate issue reopening in a broad sense, mixing together triage-
related and change-related reopening. Other authors investigate only fix-related reopen-
ing by studying a subset of issues with resolution FIXED.

Comparison Between Supplementary Changes and Issue Reopening. Le
An et al. (2014) analyzed the relationship between supplementary changes and issue
reopening on WebKit and projects from Eclipse Foundation and Mozilla Foundation,
partially replicating the studies by Park et al. (2012) and by Shihab et al. (2010). They
found that between 21% and 34% of all issues with supplementary changes were eventually
reopened, and that only a little more than 50% of all reopened issues were associated
with supplementary changes. They conclude that issue reopening is not always related
to inappropriate changes.

In the next subsections, we describe in more detail the results found in the literature
about bug reopening, supplementary bug fixes, and rejection during code review.

3.4.2 Why are Changes Rejected?

Zimmermann et al. (2012) conducted a research at Microsoft Research asking its employ-
ees why a bug report would be reopened multiple times before being fixed. The responses
led to the following common causes (in no particular order):

(a) developers could not reproduce the bug and closed it as WORKSFORME (or the equiv-
alent in Microsoft’s issue tracking system);

(b) a bug initially marked as WONTFIX had its priority increased after new information
came in;

(c) the test team evaluated a software release in which the fix had not yet been applied,
and therefore reopened the issue report;

(d) the root cause of the bug was not properly identified, so developers just fixed a
different bug;

(e) the developer missed a special case in a fix that was discovered during testing;



26 RELATED WORK

(f) the test team initially evaluated the fix as appropriate, but then found that it was
incomplete.

Causes (a) and (b) are triage-related. Cause (c) is related to problems neither in the
issue report nor in the change, but in the code integration process. Causes (d), (e), and
(f) are change-related.

Park et al. (2012) analyzed changes containing programming errors that led to the
need to submit one or more supplementary changes for the same problem. They analyzed
a sample of 100 issue reports that were referenced at least twice in commits from Eclipse
and Mozilla. They discovered the following types of errors of omission:

• the first change did not cover all platforms on which the product runs;

• the first change introduced an incorrect conditional statement;

• the first change modified a unit of code, but did not modify related units as required;

• the first change created an API that was later deemed inappropriate;

• the first change included an incomplete refactoring;

The Code Review FAQ page at the Mozilla Developer Network1 provides a list of
reasons why a change would be rejected during code review:

• the code did not resolve the right problem;

• the code modified an API and the resulting design was deemed inappropriate;

• the code was unreadable or ill-documented;

• the code did not follow the coding style guide;

• the code introduced potential security flaws (e.g., by not sanitizing the input);

• the code did not integrate well with other modules;

• the code did not include the required unit tests;

• the code did not follow the licensing rules.

1See 〈https://developer.mozilla.org/en/docs/Code Review FAQ〉.



3.4 CHANGE REJECTION 27

3.4.3 What Characterizes Rejected Changes?

It is important to identify the causes of change rejection in order to avoid the mistakes
that lead to it. No less important is to find out in which aspects rejected changes differ
from the rest; these findings can lead to models to predict which changes are likely to be
rejected and which issue reports are likely to contain rejected changes. Such prediction
models can be used to focus early verification efforts on those issue reports and on changes
that are more likely to cause trouble.

Shihab et al. (2010, 2012) developed a decision tree model to predict the reopening of
issue reports from Eclipse 3.0, based on data available in the issue tracking system and the
version control system. The model had a precision of 62.9% and a recall of 84.5%. Their
model considered 22 factors that could influence the reopening of issue reports, including
attributes of the issue report itself, attributes of the change, and human factors. The
following factors were considered the most important in predicting reopening:

• issue description and comments : terms such as “debugging”, “breakpoint”, and
“platforms” are associated with reopening;

• time developers took to submit the first change to the issue: the longer it takes, the
greater the likelihood of reopening;

• issue component : certain components of a system are more prone to issue reopening.

Park et al. (2012) investigated the characteristics of commits that required supple-
mentary commits for the same issue report. They found that such commits tend to be
larger and more spread out in the code base.

Zimmermann et al. (2012) developed a logistic regression model to explain the reopen-
ing of issues in Windows Vista and Windows 7. They reached the following conclusions:

• bugs found by code review or by code analysis tools are less likely to be reopened,
supposedly because they are easier to triage and resolve;

• on the other hand, bugs found by users or system testing are more likely to be
reopened, because they are more complex and difficult to reproduce;

• bugs with greater initial severity are more likely to be reopened;

• when the person who reported a bug and the person who is initially assigned to re-
solve the bug are from different teams, the bug report is more likely to be reopened.

It should be noted that the authors did not make a distinction between triage-related
and change-related reopening.

Caglayan et al. (2012) studied a corporate system to identify factors that characterize
the reopening of issues. After training logistic regression models for the data of an issue
tracking system, they determined that the following factors are relevant:

• developer activity : issues assigned to developers who resolved issues recently or who
changed many source code units are more likely to be reopened;



28 RELATED WORK

• issue centrality : issues that require changes in source code units that are associated
with many issues are more likely to be reopened;

• geographical location: when the issue reporter and its assignee are geographically
apart, the issue is more likely to be reopened.

Again, authors did not make a distinction between triage-related and change-related
reopening. Moreover, they interviewed developers from the company’s quality assurance
team in order to better understand the results. The developers suggested part of the
results could be explained by two factors that favor reopening: developer workload and
issue complexity.

Jongyindee et al. (2011) investigated issues from Eclipse that were reopened after
receiving a commit. They found that issues resolved by developers who perform more
commits are less likely to be reopened.

Almossawi (2012) investigated issues from the GNOME project that were reopened
after being closed with resolution FIXED. They found that such issues tend to be associated
with source code with high cyclomatic complexity.

3.4.4 What is the Cost of Rejected Changes?

The costs associated with change rejection have been characterized by its occurrence and
by time costs. The occurrence is measured by the issue reopening rate (proportion of
all issues that are reopened), the supplementary change rate, and the patch rejection
rate (during code review). Time costs are measured by comparing the lifetime (i.e.,
time between the creation and the final closing of an issue report) of reopened and non-
reopened issues.

The following costs have been found in the literature:

• Issue reopening rate. Analyzing issues with resolution FIXED, the reopening rate is
2.15% on the GNOME project, 1.35% on Evolution, and 3.88% on GTK+ (AL-
MOSSAWI, 2012), and oscillates between 9.0% and 9.5% on Eclipse and Net-
Beans (WANG; BAIK; DEVANBU, 2011). Analyzing only issue reports that can
be linked to commits in Eclipse, the reopening rate raises to 11.7% (JONGYINDEE
et al., 2011).

• Supplementary changes rate. Park et al. (2012) found that 22% to 33% of all closed
issue reports were associated with supplementary commits (analyzing projects from
Mozilla and Eclipse).

• Change rejection rate (code review). Jeong et al. (2009) found that about 7% of the
changes submitted to code review are rejected.

• Time costs. Reopened issue reports have a longer lifetime. For Shihab et al. (2010),
the lifetime of reopened issues (not making a distinction between triage-related
and change-related reopening) is twice as long of that of non-reopened issues.
Jongyindee et al. (2011) noticed that issues reopened after being resolved with a



3.5 RAPID RELEASES 29

commit also have a longer lifetime than non-reopened issues, although they did not
quantify the difference. Park et al. (2012) concluded that issues associated with
supplementary changes have a lifetime 56% to 91% longer than those associated
with a single change.

3.5 RAPID RELEASES

Mozilla’s adoption of rapid releases attracted the attention of researchers, who measured
the impact of this change. They analyzed the impact of rapid releases on Mozilla under
multiple perspectives, such as quality, reputation, and security.

Baskerville and Pries-Heje (2004) interviewed employees from companies that adopted
rapid release cycles in 2000. According to an interviewee, rapid release cycles limit reuse
and systematic thinking. Also, the authors found that, in the companies they studied,
process quality and product quality were sacrificed in the name of meeting customers’
vague requirements.

Khomh et al. (2012) studied the effect of rapid release cycles on the quality of Mozilla
Firefox, assessed by three metrics: number of post-release bugs created per day, crash
rate, and uptime (i.e., the time between a user starting up Firefox and experiencing a
failure). Comparing data from traditional and rapid releases, they found no significant
difference in the number of post-release bugs and crash rate. The uptime, on the other
hand, was significantly lower in releases developed in rapid cycles, meaning that the
software crashed earlier during its usage.

Mäntylä et al. (2013) studied the effects of rapid releases on test case executions at
Mozilla. They found that, under rapid releases, testing was more focused: the number of
test executions increased, but the scope was reduced. Instead of running the whole test
suite, engineers narrowed the scope to high-risk features and regressions. The authors
also noted that, to keep up with testing needs, more specialized testers were hired.

Plewnia et al. (2014) studied the impact of release cycle length on the market share
and reputation of three web browsers, including Firefox. They observed that Firefox’s
market share dropped after the adoption of rapid releases, and its reputation among
users reduced. They argue that Firefox users feared that rapid releases would break their
stable environments (e.g., corporate web-based information systems) and would become
a burden for system administrators who would have to install new versions of Firefox
every six weeks. In the first versions developed under rapid releases, updates prompted
a confirmation dialog and required administrative access. The reputation was gradually
recovered with the introduction of silent updates and Mozilla’s introduction of extended
support releases aimed at corporate environments.

Clark et al. (2014) found that rapidly-released versions of Firefox do not contain more
security vulnerabilities than the extended support releases. They also note that rapid
releases are a “moving target” for attackers. Most vulnerabilities in a rapid release version
are found only when the version is not longer the newest one.



30 RELATED WORK

3.6 SUMMARY

In this chapter, we presented related work on mining software repositories, code reviews,
issue lifetime, change rejection, and rapid releases. These are some important points to
remember:

• Mining software repositories, such as issue tracking systems and version control
systems, allows researchers to validate hypotheses related to software development.

• Change rejection is not a concept found in the literature, but it is related to issue
reopening, supplementary changes and to rejection during code reviews.

• Issue reopening can be triage-related or change-related. The latter is a form of
change rejection, while the former is not.

• Reopened issues have a longer lifetime.

• At Mozilla, the introduction of rapid releases resulted in less comprehensive testing,
but it did not cause an increase in post-release bugs or security vulnerabilities.
At first, rapid releases harmed Mozilla’s reputation, due to implementation and
communication issues, but the reputation has since been recovered, partly due to
the adoption of silent updates.



Chapter

4
DATA AND METHODS

In this chapter, we present the data used in this work and describe in detail how we
pursued the research goals enumerated in Chapter 1. To this end, we further divide each
research goal in research questions and explain how to answer them by computing metrics
from issue tracking systems and source code repositories.

4.1 GOALS AND QUESTIONS

Each research goal is fulfilled by answering specific research questions (RQ), which are
detailed below.

4.1.1 Research Goal 1

RG1: Propose and compare techniques to detect change rejection.
RQ1.1: How do supplementary commits and reverts compare? Rationale: various

studies use techniques based on those rejection types to detect inappropriate changes (JEONG
et al., 2009; SHIHAB et al., 2010; PARK et al., 2012). By answering this question, we
determine whether those techniques are equivalent or not.

RQ1.2: How do reopening, late reverts, and late supplementary commits compare?
Rationale: those rejection types occur after a change is committed and, if they are
always associated with inappropriate commits, they should be equivalent. By counting
the number of issues associated with each combination of those rejection types we can
determine if they actually agree on the set of inappropriate commits.

RQ1.3: What is the performance (precision and recall) of existing techniques? Ra-
tionale: because those techniques are heuristics to detect inappropriate changes, it is
worthwhile to understand how accurate they are so to better understand potential threats
to validity when using them.

RQ1.4: How do negative reviews and reverts compare? Rationale: negative reviews
and reverts are two rejection types that occur in distinct periods of a change’s lifecycle.

31



32 DATA AND METHODS

Nonetheless, determining how often they overlap is useful to understand the relationship
between code reviews and automated tests.

4.1.2 Research Goal 2

RG2: Quantify rework triggered by inappropriate changes.
RQ2.1: What proportion of issues involves rework (rejection rate)? Rationale: the

rejection rate helps characterize the number of issues that require rework relative to the
total number of issues.

RQ2.2: How often are issues rejected (rejections per day)? Rationale: are issues
rejected every day? Every week? The number of rejections per day helps characterize
rework in a project’s schedule.

RQ2.3: What is the impact of inappropriate changes on issues’ lifetimes (additional
time)? Rationale: even if the rejection rate is low, the impact of inappropriate changes
can be high if they contribute to a much longer issue lifetime.

4.1.3 Research Goal 3

RG3: Empirically validate hypotheses about rework.
RQ3.1: Do appropriate changes take longer to submit? Rationale: intuition suggests

that developers should spend more time carefully writing and testing a change so it is
more likely to be appropriate. We investigate whether time to submission is correlated
with change appropriateness.

RQ3.2: Are inappropriate changes likely to be released? Rationale: while in RG2
we investigate the impact of inappropriate changes on the development team, in this
question we investigate their impact on product quality as perceived by end users.

RQ3.3: Is time to post-rejection submission correlated with latent time? Rationale:
intuition suggests that the longer a problem goes unnoticed (latent time or time to re-
jection), the longer it takes to fix it, due to the developers’ fading memory about the
context of the original issue. In this question we test this intuition.

RQ3.4: Is time to post-rejection submission correlated with time to original submis-
sion? Rationale: we investigate whether an issue that takes more time to resolve also
take more time to re-resolve.

4.1.4 Research Goal 4

RG4: Assess the impacts of process changes on rejections.
RQ4.1: How has the developer workload changed under the new process? Rationale:

developer workload is a factor that may affect other metrics considered in this study, such
as rejection rate, so it is important to understand how it changed over time.

RQ4.2: How has the rejection rate changed under the new process? Rationale:
measuring the rejection rate is a simple way of verifying whether the process was an
improvement or a deterioration regarding the creation of inappropriate changes.

RQ4.3: How has the early revert rate changed under the new process? Rationale:
separating early and late reverts helps put reverts in perspective, since late reverts are



4.2 RESEARCH METHODS 33

riskier with respect to the release of inappropriate changes.

RQ4.4: How has the total additional time caused by inappropriate changes varied un-
der the new process? Rationale: measuring the variation of the total additional time also
helps verifying whether a new process was an improvement with respect to its predecessor
but, differently from RQ4.2, it takes the time dimension into account.

4.2 RESEARCH METHODS

To answer the research questions, we rely on quantitative analysis of data from Mozilla’s
issue tracking system and version control repositories, as well as feedback from Mozilla
engineers.

Research goals 1 and 2 are descriptive. To pursue these goals, we describe aspects
of the data using Venn diagrams, tables, and box plots. Research goals 3 and 4 require
determining whether there are significant differences between two subsets: appropriate
vs. inappropriate changes, early vs. late rework, new process vs. old process, among oth-
ers. To answer the corresponding research questions, we additionally perform statistical
tests. In particular, for the questions related to rejection rate, we use Fisher’s exact test
for count data; for the questions related to time intervals or productivity, we perform
Mann-Whitney’s U test for ordinal data. Correlations are estimated using Kendall’s tau
statistic. All statistical tests used are non-parametric, suitable for non-normal distribu-
tions, which are common in our analyses.

In order to better understand the process and to help interpret the observed differ-
ences, we also talked to Mozilla engineers through the firefox-dev mailing list. We
reported our findings using numbers and graphs and asked engineers if the results were
expected and how they could be explained. The messages exchanged with engineers are
available in Appendix A.

4.3 DATA EXTRACTION

In order to answer the research questions, we analyzed data from two sources: Mozilla’s
issue tracking system (Bugzilla), and version control repositories. In the following sections
we describe both data sources.

4.3.1 Issue Tracking System

For the first data source, a Mozilla engineer provided a SQL database dump of Mozilla’s
issue tracking system. The dump contains everything that is stored on Mozilla’s installa-
tion of Bugzilla—including issue reports and the history of all their modifications,—except
for user data, left out for security and privacy reasons, and attachment contents, which
would increase significantly the data set size. The data set contains almost 880,000 issue
reports created for 97 projects from September 1994 to November 2013.

In this thesis, we focus on two database tables contained in the dump: bugs and
bugs activity. The table bugs contains one record for each issue report. Each record
contains the issue’s numeric identifier, the person who created it, the creation date, and
the latest value for fields such as title, description, and status. The table bugs activity



34 DATA AND METHODS

changeset: ec12c4e4bcd3

user: Developer 1

date: Mon Nov 03 16:46:01 2014 -0500

summary: Bug 1043699 - Backout of changeset 6921bd616ff1. DONTBUILD.

changeset: b217ba1685f4

user: Developer 2

date: Tue Nov 04 06:35:12 2014 +0900

summary: Bug 1092813 - Update the SDK path to 8.1. r=mshal

changeset: 66cdb18f36da

user: Sheriff

date: Wed Nov 12 15:32:16 2014 -0500

summary: Merge b2g-inbound to m-c. a=merge

Figure 4.1: Data extracted from three commits.

contains all modifications users made to issue reports over time, including changes in
status, resolution, review flags, and any other field in an issue report. Each record
contains the new value of a field, the user who altered the field, and the time of the
modification.

The database dump used to be publicly available, but was withdrawn in August 2014.
As of November 2014, Mozilla engineers are working on improving the data sanitization
process in order to release database dumps again. For more information see issue reports
1013953 and 1054795 at 〈https://bugzilla.mozilla.org/〉.

4.3.2 Version Control Repositories

We also cloned two version control repositories, Mozilla-Central and Comm-Central, pub-
licly available at 〈https://hg.mozilla.org/〉. From those repositories we extracted the
commit log, containing, for each commit, its identifier, author (user), date, and summary
message.

Figure 4.1 illustrates the data extracted from three commits using the hg log com-
mand. The field changeset is the commit’s hexadecimal identifier, and summary is the
commit message.

4.4 DATA FILTERING

The available Bugzilla and source code repositories span multiple projects and a large
time period. In this study, we select a subset of the projects and a smaller time span to
analyze, as described next.



4.4 DATA FILTERING 35

4.4.1 Projects

In our Bugzilla data set, there are 97 projects registered. They include popular software
products, such as Firefox, but also less known products used internally and even projects
not focused on software development, such as websites.

We looked at the most active software development projects since 2009, two years
before the changes in Mozilla’s process, measured by the number of issue reports with
status FIXED. The rationale is that our analyses rely on issue reports and commits under
two periods, before and after the process changes. Using these criteria, we selected three
projects:

• Core. Shared components used by Firefox and other Mozilla software, including
handling of Web content; Gecko, HTML, CSS, layout, DOM, scripts, images, net-
working, etc. Issues with web page layout probably go here, while Firefox user
interface issues belong in the Firefox product.

• Firefox. For bugs in Firefox Desktop, the Mozilla Foundation’s web browser. For
Firefox user interface issues in menus, developer tools, bookmarks, location bar,
and preferences. Many Firefox bugs will either be filed here or in the Core product.

• Thunderbird. Email client originally developed by the Mozilla Foundation and
now maintained by its community.

Then, by browsing the projects’ web pages, we identified and cloned the projects’
version control repositories:

• Mozilla-Central: Mercurial repository containing code for Core, Firefox, and
other projects.

• Comm-Central: Mercurial repository containing code for Thunderbird.

We selected only issues that are closed with resolution FIXED, and that are associated
with at least one commit. This subset corresponds to the issues that were resolved by a
source code change.

4.4.2 Time Span

Table 4.1 shows, for each data source, the dates of the earliest and latest issues and
commits. Based on the table and on the release dates1 for Mozilla’s products, we selected
the period from June 20, 2011 to September 16, 2013, i.e., from the release of Firefox 5
up to the release of Firefox 24. Under this period, Mozilla’s projects adopted rapid, 6-
week releases, and some projects, such as Core and Firefox, also adopted sheriff-managed
integration repositories.

Specifically for the research goal 4, which requires comparing two periods of Mozilla’s
history—traditional releases and rapid releases,—we additionally use data from June 29,
2009 to March 21, 2011, as shown in Figure 4.2. During this period, Mozilla’s engineers
developed versions 3.6 and 4.0 of Firefox according to a traditional release process.

1Available at 〈https://wiki.mozilla.org/RapidRelease/Calendar〉.



36 DATA AND METHODS

Table 4.1: Minimum and maximum dates of issue creation and commits in the available
data.

Repository Min. Date Max. Date
Core’s issues July 20, 1999 November 28, 2013
Firefox’s issues May 22, 2001 November 28, 2013
Thunderbird’s issues October 26, 2000 November 26, 2013
Mozilla-Central’s commits March 22, 2007 October 18, 2014
Comm-Central’s commits July 17, 2007 November 28, 2013

3.5 3.6 4.0 5 6 7 8 9 10
11

12
13

14
15

16
17

18
19

20
21

22
23

24

2009-06-30 2011-03-22 2011-06-21 2013-09-17

traditional releases rapid releases with integration repositories

versions

release dates

rapid releases
(transition)

Figure 4.2: Periods under analysis.

4.5 EVENTS AND METRICS

In order to measure rework in multiple points in an issue’s lifecycle, we first identify
important events in this lifecycle and then define metrics around those events.

4.5.1 Events

Figure 4.3 shows important events associated with an issue report. We define event as
the interaction of a user with an issue tracking system or a version control repository in
a specific point in time with the goal of recording a task he or she performed. Events
are related to an issue’s creation and to a change’s submission and rejection. Each row
in Figure 4.3 corresponds to events related to a specific subprocess: (a) code review, (b)
commit and automated testing, and (c) closing and manual testing.

A change submission event signals that a change is ready to be evaluated. There are
three types of change submission:

• review request : the change is ready to be reviewed;

• commit : the reviewed change is ready to be automatically tested;

• closing (with resolution FIXED): the automatically tested change is ready to be
manually tested.

A change submission can be either original or post-rejection. A change submission is
original if it is the first submission of its type for its issue. Otherwise, it is post-rejection
if it is a supplementary change that occurs after a rejection of its type (e.g., if it is a
commit performed after a revert).



4.5 EVENTS AND METRICS 37

time

issue report 
creation

original  
review  
request

negative  
review

post-rejection 
review  
request

original 
closing

revert
post-rejection 

commit
original 
commit

reopening
post-rejection 

closing

time to 
original 
review 
request

time to 
negative 
review

time to 
post-rejection 
review request

time to 
revert

time to 
post-rejection 

commit

time to 
reopening

time to 
post-rejection 

closing

time to 
original 
commit 
(1–5)

time to 
original 
closing 
(1–8)

1 2 3 4

5 6 7

8 9 10

original 
change 

submission: 
2, 5, 8

change 
rejection: 

3, 6, 9

post-rejection 
change 

submission: 
4, 7, 10

issue report 
creation: 1

time to 
original 

submission: 
1–2, 1–5, 1–8

latent  
time: 

2–3, 5–6, 
8–9

time to post-
rejection 

submission: 
3–4, 6–7, 9–10

(a)

(b)

(c)

Figure 4.3: Time-interval metrics.

A change rejection event signals that the change was considered inappropriate. Anal-
ogously, there are three types of rejection:

• negative review (related to a review request): a problem was found during code
review;

• revert (related to a commit): a problem was found after a commit, either before or
after a successful build (early revert or late revert, respectively);

• reopening (related to an issue closing): a problem was found for an issue closed after
a successful build; usually, that means that the change should also be reverted.

4.5.2 Metrics

From these events, we compute metrics in two categories: counting metrics and time-
interval metrics. Counting metrics are computed by counting the number of issues that
contain a particular event; those metrics are reported either as absolute values (e.g.,
number of issues with negative reviews), or relative to another event (e.g., proportion of
issues with negative reviews among issues with review requests). Time-interval metrics
are computed by measuring the time interval between two relevant events (e.g., time from
creation to first review request).

For each project we compute the following absolute counting metrics:

• number of issues with a negative review;



38 DATA AND METHODS

• number of issues with a revert;

– number of issues with an early revert;

– number of issues with a late revert;

• number of issues with a reopening.

We also compute the following relative counting metrics:

• negative review rate: proportion of issues with a negative review (among issues with
a review request);

• revert rate: proportion of issues with a revert (among issues with a commit);

– early revert rate: proportion of issues with a revert before the issue is closed
(among issues with a commit);

– late revert rate: proportion of issues with a revert after the issue is closed
(among issues with a commit);

• reopening rate: proportion of issues with a reopening (among all issues with a
closing).

Figure 4.3 also shows time-interval metrics between events. Each time-interval metric
is the duration of the time interval between two consecutive events. For instance, time
to revert is the duration of the interval between an original commit and the subsequent
revert. Time-interval metrics are grouped in three categories:

• time to original submission: time between an issue report creation and the original
submission of a given type;

• latent time or time to rejection: time between the original submission and the
subsequent rejection;

• time to post-rejection submission: time between a rejection and the subsequent
submission.

4.5.3 Event Detection

Most events can be trivially detected from the data logged to issue reports, while others
require performing pattern matching on textual data. The following events can be easily
detected from the data available in issue reports:

• issue report creation: all issues have a creation event, and the creation date is stored
in the issue’s reported field;

• review request : occurs when the review? flag is added to an attachment in the
issue;



4.5 EVENTS AND METRICS 39

• negative review : occurs when the review- flag is added to an attachment in the
issue;

• closing : occurs when the issue’s status is changed to RESOLVED and its resolution
is changed to FIXED;

• reopening : occurs when the issue’s status is changed to REOPENED when its resolution
is set to FIXED.

The commit and revert events require analyzing the unstructured text of commit mes-
sages. The challenge lies in discovering if a commit represents a commit event (meaning
that it is a change intended to resolve an issue) or a revert event (intended to revert an
inappropriate commit), and then determining what issue it intends to resolve or revert.

Commit. We determine that a commit intends to resolve a specific issue report in a
project if its message starts with the word “bug”, followed by a 6-digit number, and that
number corresponds to an issue report in the project. By querying the Bugzilla database,
we determined that all bugs created between 2009 and 2013 had identifiers with exactly
6 digits. It should be noted that not all commits reference issue identifiers, since some
commits are merges or “bumps” (commits intended to update version numbers); those
commits are not classified as commit events in this study.

Revert. Commits whose message matches the following regular expression are de-
tected as reverts:

back(ing|ed|s)?( it )?( |-)?out|backout

This regular expression was successively refined through manual inspections of com-
mit messages and it matches the following expressions found in commit messages: “back-
out”, “backed out”, “back out”, “backing out”, “backs out”, “backedout”, “back-out”,
“backed-out”, “backing-out”, “back it out”, and “backing it out”. Some of these varia-
tions of the term “backout” are forbidden in Mozilla-Central’s commit hooks, but they
can nonetheless be found in older commits (created before the hook) and in Thunderbird’s
commits.

All 6-digit numbers following the regular expression are interpreted as the identifier
of the issues being reverted. All 6- to 12-digit hexadecimal numbers containing at least
one letter from A to F (i.e., letters that represent hexadecimal digits) are interpreted as
identifiers for commits being reverted. When a revert makes reference to a commit iden-
tifier, we link the revert commit to the issue fixed by the referred commit. For instance,
if the message for commit f96e3c57e1d8 says “Backs out revision 0f76f410b03b”, and
the message for commit 0f76f410b03b is “Bug 123456 – fix window size”, then we infer
that commit f96e3c57e1d8 is a revert for the issue report 123456.

After reading a sample of revert commit messages, we observed that numbers following
certain expressions do not represent the issue that was reverted. For instance, in the
message “Backout bug 555133 to fix bug 555950”, the number 555133 is the issue being
reverted, however the number 555950 is the issue being resolved. After some analysis, we
decided to ignore 6-digit numbers following the expressions listed below:



40 DATA AND METHODS

• resolve, fix : e.g., “Backout bug 555133 to fix bug 555950”;

• causing, cause, because: e.g., “Backed out changeset 705ef05105e8 for causing bug
503718 on OS X”;

• due to: e.g., “Backed out changeset 58fd8a926bf5 (bug 366203) due to it causing
bug 524293”;

• suspicion: e.g., “Backout revisions (...) on suspicion of causing (...) bug 536382”.

4.6 THREATS TO VALIDITY

As in any empirical study, the validity of the results presented in this paper is subject
to threats. The most relevant threats to construct, internal, and external validity are
described below.

4.6.1 Construct validity

Construct validity means to what extent the study measures what it intends to measure.
The main threats to construct validity in this study are related to time-interval metrics
and to the techniques used to detect change rejection.

The original and post-rejection submission time-interval metrics can be thought as
a proxy for the time spent developing either an original change or an improved change.
However, with the available data, we cannot directly measure the time a developer spent
actively writing a change to a specific issue, since the available time intervals include the
time when the developer was either not working or working on other issues. Therefore,
submission metrics should not be directly interpreted as amount of work or rework;
instead, they should be regarded as metrics related to potential process delays.

The other threat refers to the techniques used to detect change rejection. None
of them is 100% accurate. Nonetheless, we believe some of them are appropriate for
the purpose of this study. In particular, we believe that negative reviews and commit
reverts detect change rejections—respectively during code review and after code review—
with high precision. In other words, almost all of the events they detect are indeed
change rejections, although there are change rejections that they do not detect. For
instance, when a patch has minor problems, a reviewer may choose to verbalize the
problems without explicitly setting the review- flag. Also, an inappropriate commit
may be fixed by a follow-up commit instead of being reverted. However, with recent
changes in Mozilla’s process, especially the assignment of sheriffs that watch the build,
follow-up commits are uncommon.

4.6.2 Internal Validity

Internal validity means to what extent conclusions can be made from what was measured.
For research goal 4, the observed differences under traditional and rapid releases could be
attributed to factors other than the release length and the introduction of sheriff-managed
integration repositories, since the development process may have changed over time in



4.7 SUMMARY 41

many different ways. For this reason, in Chapter 6 we report other factors that could
contribute to the observed changes, based on discussions with Mozilla engineers.

4.6.3 External Validity

External validity means to what extent results can be generalized. All the conclusions
resulting from this study are based on data from one single software organization. The
results are not expected to be generalizable to other projects; instead, the purpose of this
study is to provide insights on the questions being studied. Furthermore, it is not trivial to
extend the study to other projects, since detecting important events and interpreting the
results require a high level of understanding about the process, in a detailed perspective,
as well as about changes in the process over time.

4.7 SUMMARY

In this chapter, we presented the research questions related to previously presented re-
search goals, described the available data and methods used to answer the questions, and
discussed potential threats to validity. In the next chapter, we report the quantitative
results of this study.





Chapter

5
RESULTS

This chapter presents quantitative results for the research questions enumerated in the
previous chapter. In the next chapter, we discuss possible interpretations of the results.

It should be noted that, as stated in Section 2.6, Thunderbird’s process differ from
Core’s and Firefox’s because it does not use sheriff-managed integration repositories and
does not enforce commit message conventions via commit hooks. Because of that, follow-
up commits are more common in Thunderbird and, as a result, metrics based on reverts
are less reliable as indicators of inappropriate changes in the project.

5.1 RG1: PROPOSE AND COMPARE TECHNIQUES TO DETECT CHANGE
REJECTION

In the previous chapter, we presented a new technique to detect change rejection by
looking for terms such as “backout” and “backing out”, which represent reverts, in commit
messages. In this section, we compare this technique with techniques proposed by other
authors, namely, issue reopening, supplementary commits, and negative code reviews.

First, we compare two rejection types applicable to changes that were already commit-
ted: supplementary commits and reverts. Then, we compare reopening with late reverts
and late supplementary commits, which are rejection types applicable to closed issues.
After that, we evaluate the precision and recall of rejection types, assuming reverts as a
reference. Finally, we compare negative reviews, which are pre-commit rejections, with
reverts, which occur after a commit.

The comparisons are performed for all three projects, Core, Firefox, and Thunderbird.
The period under analysis is the rapid release period, from June 20, 2011 to September
16, 2013.

5.1.1 RQ1.1: How do supplementary commits and reverts compare?

Figure 5.1 presents Venn diagrams that show the proportion of all issues that received
either supplementary commits or reverts, or both. The percentages outside the circles

43



44 RESULTS

suppl. commits reverts

74.4%

0.3%16.2% 9.1%

Core

suppl. commits reverts

82.7%

0.5%9.0% 7.9%

Firefox

suppl. commits reverts

87.8%

0.5%9.3% 2.4%

Thunderbird

Figure 5.1: Venn diagram comparing supplementary commits and reverts.

are the proportion of issues in our data set that did not receive either supplementary
commits or reverts. The sum of the proportions equals 100% (minus rounding errors).

The diagrams for Core and Firefox show a large intersection between reverts and
supplementary commits. In fact, very few reverts are not associated with supplementary
commits. For Thunderbird, there are comparatively fewer reverts, which suggests that
Thunderbird developers either do not systematically revert inappropriate changes, or they
fail to communicate which of their commits are reverts. The numbers for Thunderbird
reverts are consistent with the observation that its source code repository, unlike Mozilla-
Central, does not implement hooks to enforce commit message conventions.

On the other hand, most issues with supplementary commits are not associated with
reverts. This observation suggests that supplementary commits account for situations
that are not covered by reverts.

Most reverts are associated with supplementary commits, but most supplementary
commits are not associated with reverts.

5.1.2 RQ1.2: How do reopening, late reverts, and late supplementary commits
compare?

Reopening is different from supplementary changes and reverts because an issue can only
be reopened after it is closed, i.e., after the change is committed and passes automated
testing. To better compare reopening to other rejection types, we define that an issue
has late supplementary commits when it is associated with at least two commits, with at
least one commit after the issue is closed. Analogously, we say that an issue has a late
revert when it is associated with a revert performed when the issue was closed.

Figure 5.2 presents Venn diagrams comparing reopening with late reverts and late
supplementary commits. The diagrams show that most reopenings are not associated
with the other two late rejection types. These are what Le An et al. (2014) call premature
reopenings, and are probably unrelated to inappropriate changes.



5.1 RG1: PROPOSE AND COMPARE TECHNIQUES TO DETECT CHANGE REJECTION 45

late suppl. late reverts

reopenings 93.4%

2.9%

0.2%

1.0%

2.0%

0.3%

0.2%

0.1%

Core
late suppl. late reverts

reopenings 93.9%

3.2%

0.2%

1.3%

1.0%

0.2%

0.1%

0.0%

Firefox
late suppl. late reverts

reopenings 92.7%

2.8%

0.3%

1.8%

2.0%

0.0%

0.1%

0.2%

Thunderbird

Figure 5.2: Venn diagram comparing reopening, late commits, and late supplementary
changes.

Most reopenings are premature: they are not associated with either late reverts
or late supplementary commits.

5.1.3 RQ1.3: What is the performance (precision and recall) of existing tech-
niques?

We do not have an oracle that correctly classifies each issue as associated or not with
inappropriate changes. Building such an oracle requires examining the contents of each
change and reading each comment in the corresponding reports. Even so, determining
whether a change is inappropriate or not is subjective, besides being a time-intensive and
error-prone process.

Although we cannot confidently compute the precision and recall of existing techniques
without such an oracle, we can provide rough estimates under the assumption that the
oracle can be approximated by one of the rejection types. In this study, we choose
reverts as the oracle to evaluate supplementary commits, because we believe that they
best represent the act of rejecting an inappropriate change that was committed (the
reasons for such belief are discussed in Chapter 6). For reopenings, we use late reverts
as the oracle, because late reverts and reopenings are intended to detect the same subset
of inappropriate changes, those rejected after the corresponding issue is closed.

Based on this assumption, we determine the performance of reopenings and supple-
mentary commits as techniques to detect inappropriate changes, measured by their recall
and precision. Recall is the proportion of all issues with inappropriate changes that the
techniques correctly detect; precision is the proportion of all issues detected as having
inappropriate changes that actually have inappropriate changes.

Table 5.1 presents precision and recall for both reopening and supplementary com-
mits. Results for Thunderbird are shown for completeness, but they should be ignored
because our previous results suggest that reverts underrepresent inappropriate changes



46 RESULTS

Table 5.1: Precision and recall of reopening and supplementary commits.

Core Firefox Thunderbird
Rejection Type precision recall precision recall precision recall

Supplementary commits 35.9% 96.9% 46.8% 94.5% 20.2% 81.5%
Reopening (vs. late reverts) 25.3% 75.0% 28.5% 79.7% 42.2% 82.6%

in Thunderbird.

The results in the first row of Table 5.1 suggest that supplementary commits have
a very high recall at the expense of a low precision. That means that almost all issues
with inappropriate changes are associated with supplementary commits, although most
supplementary commits are false positives regarding inappropriate changes.

As shown in the second row of Table 5.1, using reopening to detect inappropriate
commits that passed automated testing results in a moderately high recall, although
lower than that of supplementary commits. However, the precision is low, meaning that
most reopenings are not associated with inappropriate commits.

Taking reverts as a reference, existing techniques can find most issues with inap-
propriate commits, but their precision is low.

5.1.4 RQ1.4: How do negative reviews and reverts compare?

Negative reviews and reverts are rejections that occur in distinct periods. While negative
reviews represent the rejection of a change that was submitted to code review, reverts
represent the rejection of a change that already passed code review and was committed
after that. Nonetheless, an issue can be associated with both rejection types. A negatively
reviewed change eventually results in an improved change that is positively reviewed and
committed, but the improved change can be rejected after that.

Figure 5.3 shows the intersection between negative reviews and reverts. Although
most issues with negative reviews are not associated with reverts and vice-versa, there is
still a significant number of issues associated with both rejection types.

In order to better understand the relationship between negative reviews and reverts,
we plotted mosaic plots, a generalization of bar plots, shown in Figure 5.4. The mosaic
plots divide issues in four categories, according to the presence of negative reviews and
reverts. The area of each tile is proportional to the number of observations within a
category; for instance, the largest tile represent the number of issues with no negative
reviews and no reverts. Highlighted tiles represent categories whose number of issues
is significantly higher or lower than expected if negative reviews were independent from
reverts. The mosaic plots show that there is a statistically significant positive association
between negative reviews and reverts.



5.2 RG2: QUANTIFY REWORK TRIGGERED BY INAPPROPRIATE CHANGES 47

negative reviews reverts

83.4%

7.7%7.2% 1.7%

Core

negative reviews reverts

81.5%

6.8%10.2% 1.5%

Firefox

negative reviews reverts

83.6%

2.0%13.5% 0.9%

Thunderbird

Figure 5.3: Venn diagram of rejection types.

−4.2
−2.0
 0.0
 2.0
 4.0

13.0

Pearson
residuals:

p−value =
< 2.22e−16

Core

Has negative review

H
as

 r
ev

er
t

FALSE

T
R

U
E

FA
LS

E

TRUE

−1.3

 0.0

 2.0

 3.7

Pearson
residuals:

p−value =
4.2455e−05

Firefox

Has negative review

H
as

 r
ev

er
t

FALSE

T
R

U
E

FA
LS

E

TRUE

−0.86

 0.00

 2.00

Pearson
residuals:

p−value =
0.021329

Thunderbird

Has negative review

H
as

 r
ev

er
t

FALSE

T
R

U
E

FA
LS

E

TRUE

Figure 5.4: Mosaic plot showing association between negative reviews and reverts.

Issues with negative reviews are more likely to receive a revert afterwards.

5.2 RG2: QUANTIFY REWORK TRIGGERED BY INAPPROPRIATE CHANGES

In this research goal, we characterize rework by quantifying the proportion of all issues
that contain rejected changes (rejection rate), which cause rework, and the proportion of
an issue’s lifetime that is spent on post-rejection submissions. Given the imprecision of
reopening and supplementary commits when used to detect inappropriate changes (see
Chapter 6), we analyze only negative reviews and reverts.

5.2.1 RQ2.1: What proportion of issues involves rework (rejection rate)?

Table 5.2 shows specific rejection rates in the period, i.e., what proportion of all resolved
issues had at least one negative review or revert. Rejection rate is effectively the pro-
portion of issues which eventually received inappropriate changes. The overall rejection
rate is smaller than the sum of negative review and revert, since it is possible for a single
issue to be associated with both rejection types.

The numbers show that inappropriate changes (i.e., changes that are eventually re-
jected) introduce a significant overhead in the process. Between 16.4% and 18.5% of all



48 RESULTS

Table 5.2: Rejection rate for multiple projects and rejection
types.

Metric Core Firefox Thunderbird
Negative review rate 8.9% 11.7% 14.3%
Revert rate 9.4% 8.4% 2.9%

Early revert rate 8% 6.7% 0.3%
Late revert rate 1.4% 1.7% 2.5%

Overall rejection rate* 16.6% 18.5% 16.4%
* Proportion of all issues that are associated with either a
negative review or a revert, or both.

Table 5.3: Number of issues with rejections and average time between rejections in the
rapid release period.

Rejection Type Core Firefox Thunderbird
Negative review 1903 issues (0.4 days) 513 issues (1.6 days) 134 issues (6.1 days)
Revert 2007 issues (0.4 days) 366 issues (2.2 days) 27 issues (30.4 days)

Early revert 1706 issues (0.5 days) 292 issues (2.8 days) 3 issues (273.3 days)
Late revert 308 issues (2.7 days) 74 issues (11.1 days) 23 issues (35.7 days)

Any rejection 3556 issues (0.2 days) 812 issues (1 days) 153 issues (5.4 days)

changes are rejected either by negative review or revert (overall rejection rate), inducing
overhead on developers, who have to write additional changes. Also, between 8.9% and
14.3% are rejected during code review, which also induces overhead on reviewers, who
have to review another change, besides having to explain why the first one was rejected.
Furthermore, except for Thunderbird, which is an outlier regarding reverts, more than
8% of all resolved issues are reverted, burdening sheriffs.

About 18% of all issues are associated with rejected changes.

5.2.2 RQ2.2: How often are issues rejected (rejections per day)?

Table 5.3 shows the number of issues with rejections and the average time between rejec-
tions in the rapid release period. For two projects, Core and Firefox, there is a rejection
every day, on average, even multiple rejections a day. For Thunderbird, there is a rejec-
tion every 5 days, on average. In any case, the numbers show that rejection is an event
that occurs frequently within the projects, triggering rework, and thus is worth studying
and controlling.

Change rejections are a common event, occurring every day in some projects, on
average.



5.2 RG2: QUANTIFY REWORK TRIGGERED BY INAPPROPRIATE CHANGES 49

●

●

●●

●●
●

●

●

●

●●
●

●

●●●

●
●

●
●
●

●●●

●

●●

●

●

●

●
●●
●

●●

●

●

●

●●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●
●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●●

●●

●

●
●

●

●

●●●

●
●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●
●

●

●
●

●

●

●●

●

●

●●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●●

●

●
●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●

●

●
●●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●●●

●

●●

●

●

●
●
●●

●
●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●●●
●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●
●●
●●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●●
●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●●●
●

●
●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●●●
●
●
●

●●

●

●
●●

●

●

●●

●

●

●●

●

●

●●

●
●

●

●●

●
●
●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●
●

●

●●●

●●

●●

●

●

●●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●●●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●●
●●
●

●

●
●

●

●
●
●

●

●

●
●

●
●

●

●

●

●
●
●

●

●
●

●●

●
●

●
●●●

●

●
●

●

●
●
●

●
●

●

●

●●●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●●

●
●

●●

●
●●

●●●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●
●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●
●
●

●

●
●

●●

●

●

●
●

●●

●

●

●●
●
●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●●

●

●

●●
●

●

●

●●

●

●

●

●

●●●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●●

●

●

●
●●

●

●

●

●

●

●

●

●
●
●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●
●●
●●●
●

●

●●
●

●

●

●
●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●
●
●

●

●

●

●●

●

●

●●

●●

●

●

●

●
●

●

●

●
●
●
●

●
●

●
●
●●●●●

●

●

●

●

●

●●●

●

●●●
●●
●
●
●

●●●

●

●●●

●
●

●●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●
●

●

●●

●

●

●

●●●●

●
●

●

●

●
●

●●

●

●

●

●
●●

●

●

●

●

●

●

●
●
●●●

●

●

●●●●●●

●●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●
●
●
●

●

●

●

●
●●

●

●

●●

●

●

●
●
●●

●
●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●
●
●

●

●●

●

●
●

●

●

●
●
●

●

●

●●

●
●
●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●●
●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●●

●
●

●
●

●

●

●●

●

●
●●

●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●●●●
●

●

●

●●

●●

●●
●

●

●●

●

●●●

●

●●

●

●

●●

●

●

●

●
●

●●●

●

●●●●●
●●

●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●
●
●

●

●

●●●

●

●

●●

●

●●●

●●

●
●
●
●

●

●
●

●

●

●
●
●

●
●●

●

●●

●●

●
●

●●●●

●●

●
●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●
●
●
●
●
●

●

●
●
●

●
●●●

●
●

●●●

●

●

●

●

●
●
●

●●

●
●
●

●●

●
●
●
●

●
●

●
●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●●●

●

●

●
●
●

●

●

●

●

●

●
●

●●
●

●
●●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●●

●●●●●

●
●

●

●
●

●

●●

●

●

●●
●

●

●
●●
●
●
●

●

●
●
●

●

●
●●
●

●

●
●
●
●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●
●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●
●●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●●●●●

●

●

●

●
●●●●

●

●●
●

●

●
●●

●

●

●●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●●

●

●

●

●
●●

●●

●

●
●

●

●
●●
●

●
●

●

●●

●●

●●

●●

●

●
●

●
●

●

●

●

●●

●

●●
●

●
●

●●
●●

●

●
●●

●
●
●

●
●
●●
●

●

●

●

●
●●

●●

●

●
●

●●

●●●

●●

●

●
●●●
●

●

●●
●

●

●

●
●

●
●●●●

●

●
●

●

●●●

●

●●

●
●

●
●
●

●●
●
●●●

●

●

●●

●

●
●●

●
●
●

●
●●

●●
●●
●

●

●

●

●
●

●

●●

●

●
●●
●

●

●

●

●

●
●

●

●
●
●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●
●
●●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●

●●
●●●

●

●

●

●
●●
●

●
●●
●

●●

●●
●

●

●

●●

●●

●

●

●

●●●

●
●●

●●●●

●

●

●

●

●

●

●●
●
●
●
●

●●

●

●
●

●

●

●
●

●
●
●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●●
●

●
●
●

●●

●

●●
●
●

●
●
●●
●

●
●●

●

●●

●

●●

●
●

●●●

●●

●

●●●

●
●

●
●

●●

●

●

●●
●

●●

●
●

●
●

●●
●
●
●

●
●

●

●
●
●
●
●
●
●●
●●●●

●

●

●●●
●
●
●

●●●
●

●●

●

●
●

●
●●
●

●●

●

●

●●

●●

●●
●

●●

●

●

●

●

●
●
●

●
●

●

●
●

●
●
●

●●
●

●

●
●

●●●●
●●●●

●
●
●
●
●
●●●
●
●

●

●
●
●

●●

●
●●
●
●●

●●
●

●●●
●●●
●
●●

●

●

●

●

●

●
●
●
●●

●

●

●
●●

●
●

●●

●●

●

●
●
●●

●●

●
●

●

●
●
●
●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●●
●

●

●●●

●

●

●
●
●
●

●

●

●
●
●●

●

●

●

●●

●●
●
●

●
●●
●

●

●

●

●

●
●
●
●

●

●
●●

●

●●●●●

●
●●
●

●
●●

●

●

●

●●●
●●●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●
●

●

●
●

●●

●
●
●●

●
●●●●
●

●
●

●

●●●
●

●

●

●●

●

●

●
●

●●●

●●●

●

●

●

●●●
●
●
●
●

●
●

●

●
●

●

●
●

●●

●●

●

●●

●
●

●

●

●
●●

●●

●
●●
●●

●
●
●
●

●
●
●
●

●

●●
●
●

●●●●●

●

●

●
●●
●

●●
●●
●
●

●

●
●●
●

●

●
●

●
●
●
●

●●●●
●

●
●

●
●

●●

●

●●●
●
●

●

●●

●
●

●●●
●
●
●●●●
●

●

●
●
●

●●

●

●

●

●
●●
●
●
●
●
●

●

●

●
●

●●
●
●
●●
●●

●
●

●●
●●
●●
●●●
●

●

●
●

●

●

●

●
●
●
●●●
●
●●●

●

●

●

●

●
●●
●
●
●
●
●●●●●●

●

●●

●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●

●

●

●
●

●

●●
●●
●

●

●●

●
●

●●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●●

●

●

●

●
●●

●●

●

●
●

●

●

●

●
●

●

●

●●●
●
●
●
●

●

●

●

●

●

●●
●
●

●

●

●●

●

●

●
●

●

●●

●
●●
●
●
●

●

●●

●

●

●

●

●

●●
●

●

●

●

●
●●

●●
●●
●
●

●

●●
●●

●
●
●
●

●

●

●
●
●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●
●●●
●

●●
●
●

●
●
●●●
●

●

●
●

●

●
●
●●

●

●●

●
●

●
●

●
●●
●

●

●
●
●
●

●

●
●●●●

●

●

●
●
●

●●

●

●●●

●

●
●●●●
●

●

●

●
●
●

●
●
●●
●●

●

●

●●

●
●●●
●●●
●●
●
●
●
●●

●
●●
●

●●●●

●

●
●●
●

●●

●
●
●●

●

●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●
●
●
●

●

●

●

●
●●
●
●
●●●
●

●
●
●

●

●
●●●●●●●●
●

●●●●●●●●●●●●●●●●

●●●●●
●

●

●
●

●●●
●●●

●

●●

●
●
●●

●●
●
●●●
●

●
●●
●●

●

●●

●

●

●

●

●

●●●●

●●

●
●●●
●
●●●●
●

●●

●●●
●
●
●
●

●

●
●

●
●
●

●

●●
●
●●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●
●●
●

●

●●

●

●

●
●

●

●

●●●

●
●

●

●
●●

●●●●
●●●

●
●

●

●

●●●
●

●

●
●

●
●

●
●
●

●

●
●

●

●●●

●

●
●

●

●

●

●
●

●

●
●
●●

●●●

●

●●

●

●

●●

●
●●
●

●
●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●●

●
●

●

●

●
●

●

●
●●
●
●

●

●
●

●

●
●
●

●

●
●

●●

●

●

●
●

●
●

●

●●

●

●
●

●
●

●

●●

●
●

●

●
●●

●

●

●

●●

●

●●
●

●

●

●

●●

●

●
●
●●
●
●

●

●

●●
●
●

●

●●
●

●●

●

●
●●●
●●
●
●
●
●●

●
●
●
●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●●●●
●

●
●
●
●
●
●●●
●●

●

●
●

●●

no yes no yes no yes

5e
−

01
5e

+
00

5e
+

01
5e

+
02

5e
+

03

Has rejection?

Li
fe

tim
e 

(d
ay

s)

Core Firefox Thunderbird
*** *** ***

5.7

22.3
12.7

38.4

14.2

63.4

Figure 5.5: Distribution of issues’ lifetimes. Asterisks represent p-values: *** ⇒ p <
0.001; ** ⇒ p < 0.01; * ⇒ p < 0.05.

Table 5.4: Average individual (per-issue) additional time attributed to inappropriate
changes.

Individual additional time Core Firefox Thunderbird
Negative review 145.9% 85.8% 128.2%
Revert 85.0% 44.2% 42.5%
Any rejection 130.0% 76.6% 119.8%

5.2.3 RQ2.3: What is the impact of inappropriate changes on issues’ lifetimes
(additional time)?

We determine the percentage increase of issues’ lifetimes caused by inappropriate changes
by measuring the lifetime of two categories of issues: issues associated with rejections and
issues not associated with rejections. The lifetime is measured from an issue’s creation
to the last time its status is changed to FIXED.

Figure 5.5 shows the distribution of issues’ lifetimes, grouped by whether they contain
a rejection or not. As expected, issues associated with rejections have significantly longer
lifetimes.

Table 5.4 shows the individual additional time (or per-issue additional time) associated
with different rejection types. It measures how much longer, on average, the lifetime of an
issue associated with a specific rejection type is when compared to an issue without any
rejection. For instance, the first row compares issues whose only rejection was a negative
review to issues without rejections.

The average individual additional time ranges from 76.6% to 130%. Negative reviews
are associated with larger additional times when compared to reverts.



50 RESULTS

Table 5.5: Total additional time caused by inappropriate changes.

Total additional time Core Firefox Thunderbird
Negative review 11.6% 9.5% 18.9%
Revert 7.2% 3.4% 0.9%
Any rejection 21.6% 14.2% 20.2%

Table 5.5 shows the total additional time of inappropriate changes, which measures
how much additional time is spent on a project because of inappropriate changes. We
estimate the total additional time by dividing the actual total lifetime, i.e., the sum of
all issues’ lifetimes, by the expected total lifetime, i.e., the estimated sum of all issues’
lifetimes if there was no rejection. The expected total lifetime is computed as the product
between the number of issues and the mean lifetime of issues without rejections.

The numbers show that negative reviews contribute the most to the total additional
time, followed by reverts. This result is intuitive, since negative reviews are the most
common rejection type and they are associated with a large individual additional time.
The total additional time of issues associated with any rejection type varies between
14.2% and 21.6%, partly due to the fact that issues can be associated with multiple
rejections.

Inappropriate changes cause as much as a 21.6% increase to the sum of the lifetimes
of a project’s issues.

5.3 RG3: EMPIRICALLY VALIDATE HYPOTHESES ABOUT REWORK

In the previous sections of this chapter, we characterized rework using exploratory data
analysis. In this section, we report the results of statistical tests performed to evaluate
certain hypotheses about rework in light of the available data.

5.3.1 RQ3.1: Do appropriate changes take longer to submit?

To determine whether appropriate changes (i.e., changes that were not rejected) take
longer to submit, we measure the time to submission, that corresponds to the time
between an issue’s creation and the original submission of a change for review. The
metric is computed separately for appropriate and inappropriate changes. A change is
considered inappropriate if it is ever negatively reviewed or reverted.

The rationale for this question is the belief that time pressure leads to inappropriate
changes. Figure 5.6 tells a different story. It shows that inappropriate changes in fact
take longer to submit (the difference is significant at the 0.05 level for all projects).

This result suggests that, instead, the time to submit may be correlated with issue
difficulty: difficult issues require more development time, and are also more likely to be
incorrectly resolved. However, we could not test this new hypothesis, since we do not
have data on issue difficulty (in a future work, we may test the hypothesis using change



5.3 RG3: EMPIRICALLY VALIDATE HYPOTHESES ABOUT REWORK 51

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●
●
●

●

●●

●

●

●

●
●

●

●

●●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●
●

●

●

●●

●

●●●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●
●

●

●

●

●●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●
●

●
●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●
●●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●●

●
●

●
●●

●

●

●●

●
●
●

●

●

●

●
●
●

●

●●
●
●

●●
●

●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●
●

●●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●●
●

●

●
●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●●

●
●

●

●
●●●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●●●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●●

●

●
●
●

●
●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●
●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●
●
●

●
●

●

●

●

●

●
●
●
●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●●

●
●

●●●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●●●

●●
●

●

●●

●
●

●
●

●

●

●

●

●
●
●

●

●
●●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●
●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●
●

●

●

●

●
●
●●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●●

●●

●

●

●
●●

●

●

●●

●●●

●

●
●

●

●

●●

●

●

●

●

●●
●
●●
●

●

●

●

●

●

●

●

●●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●●

●●

●

●●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●●
●

●●
●

●

●●●

●

●

●●●●

●

●●●
●

●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●●

●
●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●
●

●●
●

●
●

●
●

●

●

●●●

●

●
●●●

●●●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●●●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●
●
●

●
●

●

●
●
●
●

●

●

●

●

●

●●●

●

●

●●

●
●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●
●●
●●●
●

●

●
●
●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●●

●

●●●

●

●

●

●

●

●
●
●●

●
●

●

●

●
●

●●

●

●

●

●

●

●●
●

●
●

●
●
●●
●●

●

●
●

●

●

●

●

●

●
●

●

●●

●●
●

●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●
●

●

●

●●

●

●●●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●
●
●

●
●

●

●
●
●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●●
●

●
●●
●
●●

●

●●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●●
●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●
●
●

●

●
●●●

●

●

●
●

●●

●

●

●

●
●

●●●
●●

●

●

●
●

●
●

●●

●
●
●
●●

●●
●

●

●

●

●
●●

●
●

●
●

●●

●

●
●

●

●

●●

●
●

●

●
●●

●●

●
●

●●●

●

●
●

●
●
●
●

●●

●
●●
●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●●●

●●

●

●
●

●

●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●
●

●●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●
●●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●
●
●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●
●
●●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●●
●

●

●

●

●
●

●
●

●
●

●●
●●

●●

●

●

●
●

●

●●
●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●●

●
●

●

●

●
●
●

●

●●

●
●●●●
●●●●
●
●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●●

●

●●●

●
●
●

●●

●

●
●●

●

●

●
●●
●●●

●

●●

●
●

●
●●

●

●
●

●
●●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●●

●

●
●

●
●
●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●
●
●

●●

●●

●
●
●
●
●

●
●

●

●
●

●
●
●
●
●
●

●
●●

●

●

●●

●

●
●

●●

●

●

●●

●

●
●

●

●

●
●
●

●

●
●●
●●●

●●

●●

●

●●

●●

●
●

●

●
●
●

●●●●●
●
●

●

●

●
●●
●

●●
●●●

●

●●●

●

●●●
●

●
●

●

●

●

●

●

●
●

●

●

●●
●
●●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●
●●●

●

●

●
●●

●
●
●

●

●

●

●

●●●●●

●
●
●

●

●

●●

●

●●

●
●
●

●
●

●●●
●

●
●
●●
●●●
●●
●

●

●●
●●●
●●●

●●
●

●●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●

●

●●
●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●
●
●

●

●

●

●●

●

●

●●

●

●

●●
●

●

●

●
●

●●

●
●
●

●●

●

●

●●
●

●

●
●

●●

●

●

●

●

●

●

●
●●
●

●
●

●

●●

appr. inapp. appr. inapp. appr. inapp.

5e
−

01
5e

+
00

5e
+

01
5e

+
02

T
im

e 
(d

ay
s)

Core Firefox Thunderbird
*** *** *

0.5

2.3 2.6

7.2

1.0
1.8

Figure 5.6: Time to submit inappropriate and appropriate changes. Asterisks represent
p-values: *** ⇒ p < 0.001; ** ⇒ p < 0.01; * ⇒ p < 0.05.

Table 5.6: Mean time to submit appropriate and inappropriate changes.

Metric Core Firefox Thunderbird
Mean time to review request (appropriate) 17.0 days 28.2 days 21.7 days
Mean time to review request (inappropriate) 29.6 days 38.7 days 39.9 days
Ratio (inappropriate / appropriate) 1.7x 1.4x 1.8x

size as a proxy for issue difficulty).
Table 5.6 shows the mean time to submit both appropriate and inappropriate changes,

and the ratio between those mean times. In all projects, inappropriate changes take about
1.5x to submit, on average, compared to appropriate changes.

Changes that are eventually rejected take longer to submit; our hypothesis is that
difficult issues are more likely to result in inappropriate changes.

5.3.2 RQ3.2: Are inappropriate changes likely to be released?

Latent time is the time between a rejection and the subsequent change submission. Latent
time represents either the time between a code review request and a negative review, or the
time between a commit and its revert. High latent times raise the risk that inappropriate
changes are released to end users.

Table 5.7 shows the proportion of rejected issues that were latent for at most 12 hours,
24 hours, 1 week, and 12 weeks, before they were rejected by either a negative review or
a revert. The minimum time interval before a change is released at Mozilla is 12 weeks,
i.e., two 6-weeks release cycles, during which the change is stabilized in Mozilla-Aurora
and Mozilla-Beta (Comm-Aurora and Comm-Beta for Thunderbird).



52 RESULTS

Table 5.7: Latent time: proportion of inappropriate issues rejected within 12 hours, 24
hours, 1 week, and 12 weeks.

Latent Core Firefox Thunderbird
Time review- revert review- revert review- revert

12 hours 54.5% 65.0% 55.0% 53.3% 38.1% 29.6%
24 hours 67.7% 70.1% 66.5% 61.7% 47.8% 44.4%
1 week 92.3% 85.1% 93.2% 80.6% 88.1% 66.7%
12 weeks 99.7% 97.5% 99.6% 98.4% 100.0% 92.6%

Table 5.8: Correlation between latent time and post-rejection submission metrics

Rejection Type Core Firefox Thunderbird
Negative review *** 0.22 *** 0.24 ** 0.20
Revert *** 0.15 ** 0.14 -0.27

The first row of the table shows that latent times are usually low: for Core and Firefox,
about half of all issues that are eventually rejected remain latent for 12 hours or less (24
hours or less for Thunderbird). Low latent times contribute to fast feedback cycles, which
are valued in agile methodologies (COCKBURN; WILLIAMS, 2003). Looking at the last
row, it can be seen that very few inappropriate changes take more than 12 weeks, or two
release cycles, to be rejected. Thus, inappropriate changes are unlikely to be released to
end users.

At Mozilla, inappropriate changes are unlikely to be released to end users.

5.3.3 RQ3.3: Is time to post-rejection submission correlated with latent time?

During discussions in the firefox-dev mailing list, Mozilla engineers suggested that the
greater the time between the submission of an inappropriate first change and its rejection
(i.e., latent time), the longer it would take to submit the subsequent change. After all, in
the end of a long latent time, the developer’s memory about the issue context may not
be as fresh as when he wrote the original change.

To evaluate this hypothesis, we measured the correlation between the latent time and
the time to submit the subsequent post-rejection change. We used Kendall’s tau statistic,
which is suited for non-parametric data containing repeated values.

The estimated correlations are presented in Table 5.8. It can be observed that there
is a weak positive correlation between the time to a negative review and the time to the
subsequent review request, for all projects. The same trend can be observed for reverts in
Core and Firefox. For Thunderbird, revert metrics are meaningless, since its developers
do not systematically revert commits. Thus, longer latent time appear to be associated
with more effort during rework, although the association is weak.



5.3 RG3: EMPIRICALLY VALIDATE HYPOTHESES ABOUT REWORK 53

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●●
●

●●

●

●●
●

●

●

●
●●

●

●

●

●

●

●●
●●●

●

●●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●

●

●

●●●

●

●

●
●

●

●

●●

●●

●●

●

●●

●

●
●

●●

●

●

●
●

●

●

●●

●●

●
●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●●

●●

●●
●●

●●

●

●
●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●●

●●●

●
●

●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●●

●
●
●

●●

●
●

●

●

●

●

●●
●
●
●
●●

●

●
●
●
●
●●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●●

●

●

●

●●

●●
●

●

●●

●
●
●
●●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●

●

●

●
●
●

●●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●

●
●

●
●
●

●

●

●●

●

●

●

●●

●

●●

●●

●

●

●

●
●

●

●

●
●
●

●
●

●
●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●●●
●

●

●

●

●

●●
●

●

●

●

●●

●
●

●

●

●

●
●●
●

●
●

●

●

●●●

●●
●
●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●

●●

●
●
●

●

●

●●

●

●

●

●
●

●
●
●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●●●●

●

●

●

●
●●

●●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●
●●
●

●

●
●●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●●
●
●

●
●

●

●

●

●

●

●●

●●●

●

●

●

●●
●

●

●
●
●●

●

●●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●
●●

●

●●

●

●

●●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●

●●

●

●●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●●

●

●
●
●
●

●

●

●●●

●

●

●

●●
●

●

●●

●
●●
●

●

●●●

●

●

●

●●●●

●
●

●

●

●

●

●

●
●

●

●

●
●
●●
●

●
●

●
●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●●●

●

●●

●

●

●
●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●
●

●●

●

●●

●

●

●
●

●

●

●●

●

●

●

●
●
●
●

●

●

●

●●

●

●
●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●
●

●●

●
●

●

●●
●

●

●

●

●

●

●●
●●●

●

●●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●
●●
●

●
●●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●●●

●
●●

●

●

●
●

●

●●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●
●●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●●●
●●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●

●●

●

●●

●

●

●

●●

●

●
●

●

●

●
●●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●●
●
●

●

●●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●
●
●

●
●

●

●

●
●
●

●●●●
●

●

●●

●
●

●

●
●
●

●
●

●

●●

●

●

●

●●●
●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●●
●

●

●

●

●

●

●
●
●

●●
●●

●

●●

●

●

●

●

●

●●●

●

●

●
●
●

●
●●●

●

●
●

●

●
●
●

●

●

●

●
●

●●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●
●

●
●
●●●●
●
●

●

●●

●

●

●

●●●

●

●●●●

●●

●
●

●

●

●
●
●

●

●●
●

●●
●
●●

●

●

●
●

●●●

●
●

●

●

●

●●
●
●
●

●

●
●

●

●

●

●

●●
●●
●

●

●
●

●

●

●

●

●
●

●

●●●

●
●●
●●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●●

●●
●
●
●●

●●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●
●

●●●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●
●
●●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●
●
●

●

●●
●

●

●

●

●

●●●●

●
●●

●

●

●

●

●

●●
●●
●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●
●●
●●

●
●

●

●

●
●

●●

●

●

●

●

●

●●●●●

●
●●

●

●

●
●

●

●

●

●●
●

●

●

●●
●

●●

●●
●●
●
●

●

●
●

●

●
●
●

●
●

●

●
●

●

●

●

●

●
●
●
●

●

●●

●
●

●●
●
●

●●●●
●

●

●

●

●

●
●

●●

●

●

●●
●
●●●

●●

●●

●●

●
●

●
●

●
●●
●

●

●

●

●
●

●

●

●
●

●

●

●
●
●
●
●●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●●●
●●
●

●

●

●
●

●
●
●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●
●
●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●●
●

●●
●

●

●

●

●

●

●

●●
●
●

●
●

●

●
●

●

●

●

●
●
●

●

●
●

●

●●
●

●

●
●

●

●
●●
●
●

●

●

●
●

●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●
●
●

●

●●●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●●

●●

●

●

●
●
●

●

●●

●

●

●

●●●
●
●

●

●
●

●

●●

●●
●

●

●●
●

●●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●
●
●

●
●

●●
●

●
●●

●

●●

●

●

●●

●

●●

●

●
●
●

●
●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●
●
●

●

●
●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●●

●●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●
●
●

●●

●●

●

●●
●

●

●

●

●●

●

●

●●

●

●
●
●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●
●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●
●●
●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●
●●

●

●
●
●

●

●
●

●

●

●●●

●

●
●

●●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●
●
●

●

●

●●●
●

●

●

●

●●

●
●

●

●●

●

●
●

●

●
●
●

●●●
●

●

●

●

●

●

●
●●
●

●
●●
●

●

●
●

●

●●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●
●●
●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●
●●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●●
●

●

●

●

●
●
●

●●
●●
●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●●●

●
●●●

●

●●

●

●
●
●●

●
●

●
●
●
●

●

●

●
●

●

●
●
●●

●●

●●

●

●●●
●

●

●

●

●●
●

●
●

●

●
●

●●

●
●

●●●●●
●

●
●●

●

●●

●●

●●

●

●

●

●
●

●
●●●

●

●
●

●

●

●

●●●●
●

●

●

●●

●
●

●

●

●
●●

●●
●

●

●●

●●

●

●
●

●

●
●

●

●
●

●
●

●

●●

●

●
●●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●
●

●

●
●
●

●

●
●●●
●

●

●

●

●●

●
●

●

●

●●

●

●●●

●
●●

●●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●
●

●
●
●
●

●●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●●

●
●
●●●●

●●

●

●●
●●
●●

●
●●

●
●●
●

●

●
●
●●

●

●
●

●

●
●

●

●

●●

●

●●
●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●●

●

●

●

●
●●

●

●●

●
●

●
●●

●

●

●

●

●●
●

●

●

●●

●
●

●

●●●

●●

●

●●

●

●

●

●

●

●

●
●
●●

●

●
●●●
●

●

●

●●

●

●

●
●
●
●

●
●●

●

●●

●

●

●
●

●

●
●●

●

●●
●

●
●
●

●
●

●
●

●

●

●

●
●●
●
●
●

●●
●
●●
●●
●●●
●

●

●●●●

●●

●
●●●
●●●

●●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●
●

●

●

●

●●●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●●

●

●●●

●

●

●●
●

●
●
●

●
●
●

●

●
●
●●

●

●
●
●●
●

●

●●

●●

●

●
●●
●

●

●

●
●
●
●

●●
●
●

●
●
●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●●
●

●

●
●
●

●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●●

●

●

●
●

●

●

●

●●
●

●●

●●

●●

●
●

●

●●

●

●●
●

●

●

●

●●

●
●●
●

●

●

●

●●

●

●●
●●

●

●

●

●●
●
●

●

●
●
●
●

●

●

●
●

●
●

●
●

●
●●●●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●
●

●

●●

●

●

●●
●

●
●
●
●

●●

●
●
●
●
●

●

●

●
●
●
●
●●
●

●●
●

●

●

●●
●

●●
●

●

●●
●●
●
●●●

●

●

●●
●●

●●

●

●

●●
●

●

●

●

●

●

●

●

●●●

●

●●
●

●●
●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●
●●

●

●

●●
●

●●

●
●

●●

●●

●

●
●
●
●
●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●●●

●
●

●
●
●
●

●
●
●
●
●

●●●

●
●●
●
●

●

●

●
●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●
●

●

●

●
●

●●

●

●

●

●

●

●●●

●

●●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●●●●

●
●
●

●
●

●
●
●
●

●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●
●
●
●

●
●
●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●
●●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●●

●
●

●
●
●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●
●
●●
●

●

●
●

●

●●●●

●

●●

●

●●●
●

●

●

●●
●

●

●●●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●
●
●

●

●●
●

●

●●

●

●
●

●

●
●

●

●
●●
●●

●

●

●●

●
●

●●
●

●

●
●

●

●

●

●
●

●
●●

●

●●
●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●●●

●
●

●
●

●

●

●

●

●

●●
●

●

●●●●●

●

●

●

●●
●●

●
●

●

●

●

●

●●

●

●●

●●

●
●
●

●
●

●●

●

●

●●●

●

●●

●

●●

●

●

●

●
●●

●●

●

●

●●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●●●
●
●●
●●

●
●●●

●
●●
●

●

●

●
●●

●

●
●●

●
●●

●
●●

●
●

●●

●
●
●

●

●
●●

●
●

●

●

●
●
●
●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●
●●●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●●●

●
●

●●●
●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●●
●●●

●

●
●●
●

●

●
●
●
●

●●

●

●
●
●

●

●

●

●●
●

●
●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●
●

●
●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●
●

●

●
●●
●

●

●

●

●

●

●●

●

●

●
●

●

●
●●
●●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●
●

●
●

●

●●

●

●

●

●●●

●
●
●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●
●

●
●

●

●●

●

●
●
●●
●

●

●

●●●

●

●

●
●
●●●

●●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●●
●
●●

●

●

●

●

●●●

●

●
●
●
●

●
●

●

●

●●

●●

●

●
●
●●
●
●●

●
●
●

●●●

●

●●
●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●
●
●

●

●
●●

●
●

●

●

●

●
●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●
●

●

●

●

●

●

●●●●

●

●

●
●

●

●●

●

●

●
●●

●

●

●
●

●

●●
●

●

●

●

●●

●

●

●

●●
●
●
●

●●

●

●●●

●

●

●

●

●
●
●●

●

●
●
●●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●
●
●●
●
●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●
●

●
●●

●

●
●

●●
●

●

●
●
●

●

●●
●
●●

●

●
●

●
●●

●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●●

●

●●

●

●
●
●

●

●

●
●
●

●

●●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●
●●●

●

●●

●
●

●

●

●
●

●

●●
●

●●

●●

●●
●
●

●
●

●
●

●

●

●
●
●

●

●●
●

●

●●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●●

●

●

●
●
●●

●
●

●

●
●
●●●●●

●

●●●

●

●
●
●●

●

●

●
●

●●

●

●
●

●

●●●
●

●●●

●

●

●●

●

●●

●

●●

●
●

●●
●

●

●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●
●
●
●●●●
●●

●

●●
●
●
●

●

●●●●

●●
●

●

●
●●

●

●

●

●

●●

●

●

●

●

●
●●
●●
●
●

●

●●

●●
●

●

●
●

●
●
●●●

●

●●

●

●●

●

●●●

●●
●●
●

●
●
●●

●

●

●

●

●

●

●
●
●●
●

●●●

●

●

●
●●

●●●
●

●●

●●

●

●

●

●
●●

●
●

●

●
●

●

●
●
●
●

●●●
●

●
●
●
●
●●

●

●

●

●

●

●
●
●●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●
●
●●●

●●
●

●

●●●

●●

●

●
●

●

●

●

●
●●
●

●
●●
●
●

●

●

●
●●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●
●

●●

●

●
●

●●

●

●

●

●

●
●

●
●
●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●

●●

●
●

●
●

●
●●

●

●
●

●
●●●●

●●

●

●

●

●●
●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●●
●●

●

●

●

●

●

●

●●

●
●●●
●

●

●●

●

●

●
●●

●

●

●

●●●

●

●

●
●

●

●
●

●
●

●

●●●
●

●●●●●
●●●

●

●

●
●

●●●

●

●

●

●
●
●●

●

●

●

●
●●

●●

●

●

●

●●

●

●

●

●
●
●

●

●

●●●

●
●

●●
●

●●

●
●
●●●

●

●
●

●
●
●
●

●

●

●

●

●●●

●
●
●
●
●●●●●

●●

●

●

●

●
●
●

●

●

●

●
●
●
●

●

●

●
●
●
●

●

●
●

●

●
●
●

●
●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●
●●
●
●
●
●
●
●
●

●●

●
●
●
●

●
●
●

●●
●

●
●

●

●

●
●
●●

●

●
●

●

●

●
●●

●
●
●●
●●

●

●

●●●

●

●

●

●
●
●

●
●

●●

●

●

●●
●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●
●
●●

●

●●
●●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●●

●●
●●●

●
●

●

●
●

●

●

●●

●
●●●

●●

●

●
●

●

●●
●
●

●

●●
●●

●

●
●

●

●
●

●

●
●●●
●
●●

●

●●

●

●●

●
●

●
●●
●

●

●

●

●

●
●

●●

●

●

●

●●●●
●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●
●
●

●●

●

●
●

●●
●

●

●

●

●

●●
●
●

●●●

●
●

●

●
●●

●

●

●●

●

●
●

●

●●●

●

●

●
●

●
●
●●

●

●

●●

●

●

●

●

●

●●

●
●

●●

●

●

●
●

●
●

●
●

●●

●●

●

●
●

●

●●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●

●

●

●

●

●
●
●

●
●●●

●

●
●

●

●●

●

●
●
●

●
●

●

●
●

●●

●●

●

●

●

●
●

●

●

●●

●
●
●

●

●

●

●●●

●

●●

●●

●●

●
●

●
●

●●

●

●

●

●
●
●
●

●

●
●

●
●
●●

●●
●
●●●

●●
●
●
●●●
●

●

●●

●●

●

●
●
●
●●

●

●●●

●

●
●●
●
●●

●

●
●

●
●

●●
●

●

●

●
●●

●●

●
●

●●●

●
●

●

●

●

●●

●

●

●●

●
●●

●
●

●
●●●●●●

●

●

●●●

●
●●●
●●

●
●●●
●●

●●

●
●●

●

●
●

●
●

●

●
●

●

●●

●

●●
●

●

●
●●

●
●

●
●
●

●

●

●
●
●
●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●●
●
●●
●
●●

●

●

●

●●
●

●●
●
●

●
●

●

●

●●
●
●

●
●
●

●●

●
●
●
●●
●

●●
●
●

●
●
●●

●
●
●●●
●●

●

●
●
●

●
●●
●

●

●●●
●

●●

●●●●●

●

●

●

●●●

●
●
●
●

●

●
●

●●
●

●
●

●
●●
●

●●

●●
●

●

●

●

●
●●
●
●

●●
●●

●
●

●●●

●

●

●

●
●

●

●
●
●●

●

●●●

●
●
●

●●
●
●

●●

●●●
●

●●

●

●

●

●

●●

●
●●●
●
●●●●
●
●●●
●
●●
●

●
●●●

●
●●

●
●

●

●●

●

●●
●
●●

●●
●●
●
●
●

●

●

●●●●

●
●

●
●
●●
●
●
●
●
●●
●

●

●
●
●
●
●
●
●

●
●

●

●●●●

●
●

●

●
●
●●

●

●

●●
●●●●
●
●

●
●
●
●●

●

●
●
●●
●●
●●

●●
●
●●

●

●

●

●

●
●
●
●
●
●

●
●●
●

●●
●●
●●●●
●

●●
●●
●
●
●
●
●●●
●●
●●
●

●
●
●

●

●

●●
●●●●●●
●●
●●●
●
●●
●●●●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●
●

●

●

●●
●

●

●
●
●●

●

●
●●●

●

●●

●

●
●●

●

●
●

●●●●

●

●

●

●
●●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●●

●

●●

●

●

●
●
●

●

●●

●

●●

●
●
●
●
●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●●

●●

●●

●
●●

●●
●

●

●
●
●

●

●

●

●
●

●

●●

●

●

●●
●
●

●

●

●

●
●

●

●

●

●

●●

●

●●

●
●

●
●

●

●

●●

●

●●●●

●

●

●

●

●

●
●

●●

●

●

●●

●●

●

●

●
●
●●

●

●
●

●●
●

●

●
●
●

●
●

●
●

●●
●●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●●●●

●

●●

●

●

●

●

●●
●

●

●

●●●●

●

●●

●

●

●●●

●●

●
●
●

●

●

●

●
●
●

●●
●

●

●

●●●

●

●

●
●
●

●

●

●
●

●
●●

●

●

●

●
●
●●
●

●●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●●
●

●

●●●●●
●

●
●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●
●

●
●

●

●●
●

●●●

●

●●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●●
●

●
●

●●●
●

●
●●

●

●

●

●
●
●
●

●
●●

●

●
●

●●
●

●

●

●
●

●

●

●●

●●●●
●●
●●

●●

●

●●
●

●

●

●●

●●

●
●
●

●

●●●

●●
●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●
●●
●

●

●

●
●

●

●●
●
●
●

●

●
●
●●

●

●●
●●●
●●●●
●●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●
●

●
●
●

●

●
●●

●

●●●
●
●●
●

●●

●

●

●●●
●
●

●
●
●●
●●

●

●●●

●

●

●

●
●
●

●
●●
●

●
●

●
●●

●

●●

●

●

●

●●
●

●
●

●
●

●
●

●
●

●
●
●

●●

●●

●●

●●
●

●
●
●

●

●
●
●

●

●
●
●
●

●

●

●
●

●
●

●
●

●●
●●
●

●●

●
●●●
●●

●
●
●
●●
●

●
●●
●
●●●

●
●●●
●●

●
●

●●
●

●●

●●
●

●

●●
●●

●●●

●

●
●
●●●

●
●●

●
●●
●●●●
●●●●●
●●

●

●
●●
●
●●●●●●
●
●
●
●●
●●
●●
●●●●
●
●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●●●

●

●●●

●
●
●●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●●

●
●

●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●●
●

●

●

●
●

●●
●

●
●
●

●

●

●
●●
●
●

●

●

●●
●
●

●

●

●

●

●

●

●●

●

●
●●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●●

●

●
●●

●●

●
●
●●
●

●

●●

●

●

●

●
●
●●●

●

●

●●

●●●●

●

●

●

●

●

●

●●

●

●
●
●

●

●●

●●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●
●
●●

●

●

●

●

●

●
●
●
●

●
●

●

●
●

●

●●

●

●●

●●

●

●
●

●●●

●

●●

●

●●

●
●

●
●

●

●●
●●●
●●
●

●●●

●●●●

●●
●

●

●
●
●

●

●
●●
●●

●

●
●●●
●

●●
●

●●●

●
●●●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●
●
●

●●
●
●
●●●

●●

●

●●
●

●

●●

●

●
●●●●
●

●

●

●

●

●

●●●●●
●●

●

●●●

●
●●
●●
●
●

●
●

●●●
●●
●●

●

●
●

●

●
●

●
●
●

●
●

●
●
●

●●
●

●

●
●
●

●

●

●

●
●
●●

●

●
●●●

●

●●●
●

●
●

●

●●●

●

●
●●

●

●

●

●

●

●●
●
●
●

●●

●
●
●

●●
●
●●
●

●
●●
●
●

●

●

●●

●

●●●
●●

●
●●
●●
●
●

●●

●

●
●
●●
●●

●

●

●●
●●
●

●
●●●
●●

●

●
●●

●
●●
●●
●●●

●

●

●
●
●

●

●●
●
●
●
●

●
●
●

●●

●●

●●●●●●
●●
●
●●●●●
●
●

●
●●●●●●●
●●

●●●
●

●●
●●●
●

●●

●●●
●
●
●
●●
●
●●●●
●
●●●●●●●●●●●●●●●●

●

●

●
●
●
●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●

●●

●

●●●

●

●
●
●

●
●

●

●●

●

●
●

●

●

●●
●
●

●●
●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●●

●

●

●●●
●●
●

●

●●

●

●

●

●●●

●

●

●
●●
●
●
●

●

●

●

●
●

●

●

●

●●
●●●

●
●

●

●

●

●

●
●

●

●●

●●

●●

●

●

●
●

●●

●

●

●●

●
●

●

●

●●

●
●

●

●

●●
●●
●

●●

●

●

●

●
●
●
●
●

●

●●

●

●

●

●●

●●
●

●●

●

●

●
●
●
●

●

●

●
●

●●

●

●

●

●●

●

●

●
●

●●
●

●
●

●

●●
●

●

●
●●
●

●

●

●

●
●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●
●●●

●

●●

●●

●●

●

●●●
●

●

●●●●
●
●●
●
●

●

●

●●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●
●
●●

●

●
●●

●
●●●
●

●●

●

●
●●●

●

O S O S O S O S O S O S

1e
−

04
1e

−
02

1e
+

00
1e

+
02

T
im

e 
(d

ay
s)

Core Firefox Thunderbird
review− review− review−revert revert revert

0.6 0.8

4.7

1.5
3.4

0.7

9.1

1.6 1.1
0.7

9.4

1.7

Figure 5.7: Distribution of original and post-rejection submission metrics (O = original,
S = supplementary).

Table 5.9: Correlation between original and post-rejection submission metrics.

Submission Type Core Firefox Thunderbird
Review request *** 0.08 *** 0.13 0.07
Commit *** 0.09 0.02 -0.10

The time needed to submit a post-rejection change is weakly correlated with latent
time.

5.3.4 RQ3.4: Is time to post-rejection submission correlated with time to original
submission?

Figure 5.7 characterizes the distribution of original change submission times and sup-
plementary submission times. The overall trend is that supplementary submissions take
less time than the respective original submissions. Furthermore, time to supplementary
submission has larger dispersion.

Table 5.9 shows the correlation between the original and post-rejection submission
of changes that were rejected, analyzing separately review requests and commits. The
correlation is very weak at most, with the maximum statistically significant correlation
being 0.13.

The time needed to submit an inappropriate change has little influence on the
time needed to submit the subsequent post-rejection change.



54 RESULTS

●

●

●

TR RR TR RR TR RR

4
6

8
10

12
14

16

R
es

ol
ve

d 
is

su
es

 p
er

 a
ct

iv
e 

de
ve

lo
pe

r 
pe

r 
m

on
th

Core Firefox Thunderbird
p = 0.70 p = 0.82 p = 0.12

9.0 8.9 9.0 9.0 9.1

8.0

Figure 5.8: Developer workload for traditional and rapid releases.

5.4 RG4: ASSESS THE IMPACTS OF PROCESS CHANGES ON REJECTIONS

In order to better understand the impacts of Mozilla’s process changes, we measure
rejection-related metrics under two periods, from June 29, 2009 to March 21, 2011 and
from June 20, 2011 to September 16, 2013. These periods are referred to as traditional
releases (TR) and rapid releases (RR), respectively.

5.4.1 RQ4.1: How has the developer workload changed under the new process?

Workload is a confounding factor that can influence the rework rate. Supposedly, devel-
opers subject to a heavier workload are more likely to write inappropriate changes that
ultimately lead to rework.

We measure developer workload as the average number of issues resolved with a
commit by each active developer per unit of time. We consider a developer active in
a specific month if he or she contributed with commits for at least three issues. We
experimented other numbers of commits, with similar results regarding the variation of
the average workload.

Figure 5.8 shows the distribution of monthly workloads for each project, under two
periods: traditional releases (TR) and rapid releases (RR). There is no statistically sig-
nificant difference in workload between the two periods (at the 0.05 level). Presented
with the results, a Mozilla engineer stated that “a developer can only do so much work;
growth is mostly adding developers nowadays, not the individual doing more”.



5.4 RG4: ASSESS THE IMPACTS OF PROCESS CHANGES ON REJECTIONS 55

●

●

●

●
●

●

●

●

●

●

●

●
●

●

TR RR TR RR TR RR TR RR TR RR TR RR

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Release model

R
ej

ec
tio

n 
ra

te

Core Firefox Thunderbird
review− review− review−revert revert revert

10.9%
9.5%

5.7%

9.2%

17.3%

12.6%

4.7%

7.9%

16.5%
15.0%

1.2%
2.8%

Figure 5.9: Distribution of monthly rejection rates for each project, rejection type, and
period.

Table 5.10: Ratio between rejection rate for rapid and traditional releases.

Rejection Type Core Firefox Thunderbird
Negative review *** 0.86 *** 0.61 0.99
Revert *** 1.62 ** 1.35 1.80
Any rejection ** 1.10 *** 0.78 1.06

The workload did not significantly change under rapid releases.

5.4.2 RQ4.2: How has the rejection rate changed under the new process?

Figure 5.9 shows the monthly distribution of the rejection rate, for both negative reviews
and reverts, under both traditional and rapid releases, for each project. Table 5.10 shows
the ratio between rejection rates, i.e., the rejection rate under rapid releases divided by
the corresponding rejection rate under traditional releases, for each rejection type.

There is no significant difference between traditional and rapid releases for Thun-
derbird. For Core and Firefox, however, there are two trends: the negative review rate
became lower under rapid releases, while the revert rate became higher. The overall
rejection rate raised in Core, dropped in Firefox, and remained stable in Thunderbird.

Under rapid releases, reverts increased and negative reviews decreased.



56 RESULTS

Table 5.11: Ratio between rejection rate for rapid releases and rejection rate for tradi-
tional releases.

Rejection Type Core Firefox Thunderbird
Early revert *** 2.72 *** 3.30 0.61
Late revert *** 0.53 *** 0.37 * 2.60

●

●

●●

●

●

●

TR RR TR RR TR RR

0
20

40
60

80
10

0

Release model

N
um

be
r 

of
 e

ar
ly

 r
ev

er
ts

 / 
nu

m
be

r 
of

 r
ev

er
ts

Core Firefox Thunderbird
*** ***

50%

86%

25%

79%

25%

0%

Figure 5.10: Proportion of early reverts under traditional releases (TR) and rapid releases
(RR). Asterisks represent p-values: *** ⇒ p < 0.001; ** ⇒ p < 0.01; * ⇒ p < 0.05.

5.4.3 RQ4.3: How has the early revert rate changed under the new process?

In the previous section, we showed that the revert rate increased under rapid releases for
Core and Firefox. In this section, we analyze separately early and late reverts.

Table 5.11 shows, for both early and late reverts, the ratio between the revert rate for
rapid releases and the revert rate for traditional releases. It can be seen that the early
revert rate had approximately a three-fold increase for both Core and Firefox, while late
revert dropped to half or less. The numbers for Thunderbird are not reliable, since its
developers do not systematically report commit reverts.

Figure 5.10 shows that the proportion of all reverts that are early reverts raised from
50% or less to about 80% for all projects (except Thunderbird). Therefore there is a
trend towards earlier problem detection.

Under rapid releases, early reverts increased and late reverts reduced.



5.4 RG4: ASSESS THE IMPACTS OF PROCESS CHANGES ON REJECTIONS 57

●

●

●

●

●
●

TR RR TR RR TR RR

0
50

10
0

15
0

Release model

M
on

th
ly

 a
dd

iti
on

al
 ti

m
e 

ca
us

ed
 b

y 
in

ap
pr

or
ia

te
 c

ha
ng

es
 (

%
)

Core Firefox Thunderbird
p = 0.18 p = 0.52 p = 0.68

16% 19% 16% 13% 14% 14%

Figure 5.11: Total additional time under both traditional releases (TR) and rapid releases
(RR).

5.4.4 RQ4.4: How has the total additional time caused by inappropriate changes
varied under the new process?

In the previous research questions we investigated whether, under rapid releases, devel-
opers are writing more inappropriate changes. In this question, we investigate whether,
under rapid releases, inappropriate changes cause more additional time. Additional time
refers to the difference between the sum of the lifetimes of issues with and without inap-
propriate changes.

Figure 5.11 compares the distribution of the total additional time caused by inappro-
priate changes, computed for each month under traditional and rapid releases. There is
no statistically significant difference between both periods, therefore no evidence that the
additional time either increased or decreased.

The additional time caused by inappropriate changes has not significantly changed
under rapid releases.





Chapter

6
DISCUSSION

In the previous chapter, we presented quantitative results related to the proposed research
questions. In this chapter, we interpret the results and point to their potential impacts.

6.1 RG1: PROPOSE AND COMPARE TECHNIQUES TO DETECT CHANGE
REJECTION

Previous studies used supplementary commits (PARK et al., 2012) and issue reopen-
ing (SHIHAB et al., 2010) to detect inappropriate changes. A recent study compared
these two strategies and found that they detect two distinct sets of issues with an inter-
section of less than 50% (AN; KHOMH; ADAMS, 2014).

We argued that looking for supplementary commits or issue reopening are imprecise
strategies to detect inappropriate changes, and proposed a new strategy, based on the
detection of commits that revert other commits. We found that most issues containing
reverts also contain supplementary commits, but the opposite is not true: most issues
that contain supplementary commits do not contain a revert.

Two interpretations are possible: either supplementary commits detect inappropriate
changes not detected by reverts, or they find many false positives. To investigate this
question, we read a sample of commits from Core for issues containing supplementary
commits but no reverts.

Figure 6.1 presents the two commits associated with issue 665858. The two commits
are a few seconds apart, and are annotated with the expressions “Part 1” and “Part
2”. Clearly, this is not a case of inappropriate change; instead, it can be inferred that
the developer chose to break the change in two commits. In fact, a quick analysis of
commits for issues with supplementary commits but no reverts showed that 42.1% of
those commits contain the word “part”, suggesting that they are multi-commit changes.

About 3.7% of supplementary commits contain the word “follow-up”, suggesting that
they fix some aspect of the original commit. This is the case of issue 671029, shown in
Figure 6.2. The supplementary commit however, performs only some code cleaning to

59



60 DISCUSSION

changeset: 58655e365c91

user: ehsan

date: 2011-06-27 12:58:43

summary: Bug 665858 - Part 1: Optimize the conversion of native ...

changeset: d7ed8936e9f8

user: ehsan

date: 2011-06-27 12:59:01

summary: Bug 665858 - Part 2: Optimize nsContentEventHandler::...

Figure 6.1: Two-part commit.

changeset: 102481f5e2b9

user: pbiggar

date: 2011-07-18 21:14:33

summary: Bug 671029: Ignore Byte-Order-Mark in UTF-8 files ...

changeset: 52e36db1e8c7

user: pbiggar

date: 2011-07-18 21:32:47

summary: Bug 671029 (followup): Remove unused size parameter and

uninitialized var warning (rs=jwalden)

Figure 6.2: Minor follow-up commit.

remove compiler warnings, suggesting that the original commit was not actually inappro-
priate, just in need of a small maintainability improvement.

The examples show that the occurrence of supplementary commits for an issue often
do not imply that the original commit was inappropriate, unless preceded by a revert.
Given the low precision of the technique, we recommend using it only when followed by
manual inspection of commits.

When a developer reopens an issue, he is signaling that he thinks there is a problem
with its solution. Using reopening to detect inappropriate changes, however, has two
problems. First, this strategy yields a low recall, since it fails to detect inappropriate
changes found before the issue report is closed. For Mozilla projects, an issue is only
closed after it passes automated testing; therefore, inappropriate changes that are found
during or before automated testing do not trigger reopening, since at this point the issue
is not closed yet.

Second, the strategy is also imprecise, since many reopenings are not followed by



6.1 RG1: PROPOSE AND COMPARE TECHNIQUES TO DETECT CHANGE REJECTION 61

supplementary commits, as shown by Le An et al. (2014). Our results reinforce their
observation, showing that most reopenings not followed by supplementary commits are
also not followed by reverts. Such reopenings are said premature: often, they signal that
a developer thought that the change was inappropriate, but after some discussion the
team decided to keep the change.

There are many reasons to disagree with a reopening. For instance, in issue 665964,
developers determined that the problem that led to reopening was not directly related
to the issue, and because of that they created a new issue report. In issue 670003, a
developer closed the issue before his change was merged into Mozilla-Central; because of
that, another developer reopened the issue and waited for Mozilla-Central’s build results
before closing it again. In issue 670072, a user reopened the issue because his problem was
not resolved in Firefox 6.0; a developer closed it the same day, though, because the change
was scheduled for Firefox 8.0. In issue 675976, it appears that a developer reopened the
issue by mistake. In summary, many reopenings are not related to inappropriate changes.

Reverts seem to better capture the notion of change rejection. Differently from re-
opening, a revert signals that there is a problem with a specific change. Differently from
supplementary commits, that can be part of a multi-commit change, reverts show the
intent of undoing the original change.

There are two problems with reverts, though. First, not all projects follow the practice
of reverting inappropriate commits: some projects fix problems with follow-up commits.
Second, it is hard to detect reverts unless revert messages explicitly state that they are
reverting a specific issue or commit. Even within the Mozilla Foundation, which recom-
mends reverting inappropriate commits and proposes a convention for writing commit
messages, there are projects for which the proportion of reverts is unusually low, e.g.,
Thunderbird.

A few reverts are not associated with supplementary commits, and those reverts may
or may not signal an inappropriate change. For instance, in issue 669236, the change
was reverted because the issue was resolved in a broader way in the context of another
issue. In issue 685258, the reverted change resolved a problem in a module that was later
replaced by an alternative module. In issue 698986, the change was partially reverted
in order to resolve another issue. It would be hard to determine whether those reverts
signal an inappropriate change without reading the comments in the related issue.

In projects that systematically revert inappropriate changes and that follow conven-
tions to identify reverts, reverts are probably the most reliable indicator of inappropriate
change. Thus, we recommend studying a project’s adherence to those practices before
using reverts to detect inappropriate changes.

Negative reviews are another indicator of inappropriate changes. They are comple-
mentary to reverts, because they occur before the change is even committed. Also, they
capture a different notion of inappropriateness: often, a change is not negatively reviewed
for containing defects or for not resolving the issue, but for not being maintainable enough,
or for integrating poorly with other modules1.

We found that a significant proportion of the changes that were negatively reviewed

1For more information, see 〈https://developer.mozilla.org/en/docs/Code Review FAQ〉



62 DISCUSSION

led to improved changes that were rejected during testing. This result suggests that even
rigorous code reviews, which lead to a negative review, often fail to detect problems that
are discovered later. This observation is consistent with recent findings showing that
“code reviews often do not find functionality issues that should block a code submis-
sion” (CZERWONKA; GREILER; TILFORD, 2015).

6.2 RG2: QUANTIFY REWORK TRIGGERED BY INAPPROPRIATE CHANGES

There is no agreement in the literature about the proportion of issues that contain in-
appropriate changes. One reason for this discrepancy is that each study adopts its own
definition of change rejection, be it a negative review, a supplementary change, or a re-
opening. Reported rejection rates range from as low as than 1.3% (ALMOSSAWI, 2012)
up to 33% (PARK et al., 2012). In this study, we performed our own analyses to an-
swer the question: are inappropriate changes rare, irrelevant events, or are they frequent
enough to be worth studying? Also, what is their impact on issues’ lifetimes?

Our results indicate that inappropriate changes are common during software develop-
ment. They are present in about 18% of all issues. In some projects, changes are rejected
multiple times a day, on average.

The literature reports that issues associated with rejections have a lifetime 50% (PARK
et al., 2012) to 100% (SHIHAB et al., 2010) longer than those without rejections. Our
results suggest lifetimes 76.6% to 130% longer. Again, the results cannot be directly
compared because of the multiple definitions of rejection adopted across studies.

What if we could completely eliminate the creation of inappropriate changes? How
much of development time, including programming, reviewing, and testing, could be
saved in this scenario? Our results point to an additional time of up to 21.6% caused by
inappropriate changes, which means that eliminating inappropriate changes could save
no more than 17.8% of the development time2.

It should be noted that only part of the additional time represents rework overhead,
since only a fraction of the extra time associated with inappropriate changes is spent
with actual work (creating, submitting, reviewing, and testing changes); the other part
is idle time. Furthermore, the additional time is an upper bound on the amount of time
that could be saved in a project if all changes were appropriate. This is because some of
the extra time used in supplementary submissions may be due to new source code that
should have been added in the first submission; therefore, the time needed to write the
new code would have been spent anyway and thus could not be saved. In a future work,
one may try to determine how much of a supplementary submission consists of new code
and how much consists of modifications to the code written for the original submission.

Of course it is virtually impossible to completely eliminate inappropriate changes,
therefore projects should deal with them. There are two approaches to deal with in-
appropriate changes: prevention and appraisal (SLAUGHTER; HARTER; KRISHNAN,
1998). Prevention consists of initiatives to prevent problems before changes are even
written, thus avoiding rework. One such initiative is training developers. A direct in-

2To convert the percentage increase reported in the previous chapter to a percentage decrease, we
used the function f(x) = x/(1 + x), where x is the percentage increase, in decimal format.



6.3 RG3: EMPIRICALLY VALIDATE HYPOTHESES ABOUT REWORK 63

terpretation of the numbers suggests that investing more than 17.8% of developers’ time
in training aimed at preventing inappropriate changes is not effective in the short term,
since in this case the costs outweigh the potential benefits. Of course, training has long
term benefits that should also be considered.

Appraisal, in contrast, consists of initiatives aimed at detecting problems after changes
are written and before they reach end users. This approach includes code reviews and
testing. The objective, in this case, is not to avoid rework, but to improve the quality of
released products.

In this section, we discussed the significance of inappropriate changes in terms of their
impacts on additional time, which includes rework. In the next section, we discuss other
questions related to inappropriate changes, including whether appraisal initiatives were
effective in preventing problems from reaching end users of Mozilla’s products.

6.3 RG3: EMPIRICALLY VALIDATE HYPOTHESES ABOUT REWORK

Code reviewing and testing aim at detecting problems in a product before it reaches end
users. In a rapid release schedule, the time available for such activities is restricted. At
Mozilla, the time between a change submission and its release ranges from 12 weeks (when
a change is submitted in the end of a release cycle) to 18 weeks (when it is submitted in
the beginning of the cycle), unless a problem is detected and there is not enough time to
fix it within a release cycle.

Although inappropriate changes are common, current practices do a good job detect-
ing them before they reach end users. In Core and Firefox, less than 3% of all rejections
occur after 12 weeks of the respective change submission. Therefore, although inappro-
priate changes harm a project’s productivity, it seems that they have little impact on a
product’s quality as perceived by end users. This impression is consistent with a Mozilla
engineer’s view:

I think our development process gives us a margin of safety to detect regres-
sions well before the code actually reaches the hands of users. As the user
base of each repository grows gradually, we have an effective way to detect
unexpected problems well in advance.

The engineer points out that, during the 12 weeks in which the product is being
stabilized, it is also being used by early adopters that opted-in to alpha and beta versions.
Those users are more likely to experience problems resulting from inappropriate changes,
but they also contribute to finding those problems before a final version is released.

Although testing hypotheses about causes for inappropriate changes is not the focus
of this study, the metrics we computed for other research questions allows us to test
one hypothesis. The hypothesis is that, when faced with tight deadlines, developers
write changes more quickly and with less care, and those changes are more likely to be
inappropriate and, consequently, to be rejected. In contrast, a good, carefully written
change would take comparatively more time to be submitted.

Comparing the distribution of the time to submit both appropriate and inappropriate
changes, however, we found surprising results. Inappropriate changes actually tend to



64 DISCUSSION

take more time to be submitted. It is counterintuitive to think that careless programming
requires more time than careful programming within the context of a single issue.

Our explanation is that there is a confounding factor that contributes to longer change
submission times and also raises the likelihood of inappropriate changes. That factor is
issue difficulty. Difficult issues are harder to get right the first time, and are thus more
likely to receive an inappropriate change. Difficult issues also require that developers
spend more time figuring out a solution.

The issue difficulty hypothesis sounds plausible, but we could not verify it, since we
cannot directly measure issue difficulty. Also, the hypothesis does not help preventing
inappropriate changes, since developers have no direct control of a product’s issues and
their difficulty.

If inappropriate changes cannot be completely avoided, one can at least try to reduce
their impacts on development time, i.e., decrease the time needed to submit a change after
a rejection. A Mozilla engineer hypothesized that a long latent time induces overhead
on the developer who wrote the original change, since it is harder for him to remember
the issue context. As a result, it takes more time to write and submit the post-rejection
change. If the hypothesis is true, it means that, if code reviewing and testing were
performed earlier in the process, less time would be spent in post-rejection changes.

We indeed found a correlation between latent time and time to post-rejection sub-
mission, although a weak one. This result suggests that there are other factors that are
more important to determine post-rejection submission time.

We hypothesized that the time spent on the original submission was one of such
factors. However, we found a very weak correlation, which suggests that the original and
post-rejection changes are different in nature, and the effort needed to write the former
has little influence on the effort needed to write the latter.

6.4 RG4: ASSESS THE IMPACTS OF PROCESS CHANGES ON REJECTIONS

Mozilla shortened the release cycle of its products in order to deliver new features to its
users at a faster pace and gain market share. Although the benefits of such approach
are clear, the drawbacks are not so well known, especially regarding the impacts on the
development process.

A debatable question is whether rapid releases lead to rushed changes, that ultimately
lead to low quality. On the one hand, developers may feel pressured to finish a feature
within a single release cycle, leaving less time for testing and polishing. On the other
hand, developers may feel comfortable to spend the time they need to finish a feature,
because if they miss a release date, the next release cycle is no more than six weeks away.

Either way, the effect of rapid releases can be observed by studying the variation of
inappropriate changes before and after the adoption of rapid releases. That being said,
it is not feasible to evaluate the impact of rapid releases in isolation, since their adoption
came together with other changes in the process, such as sheriff-managed integration
repositories and overall improvements. For this reason, we study, instead, the impact
of Mozilla’s process changes—including rapid releases and sheriff-managed integration
repositories—on the rejection rate of its products.



6.4 RG4: ASSESS THE IMPACTS OF PROCESS CHANGES ON REJECTIONS 65

It would not be fair to analyze the variation of rejection rate if the developer workload
varied over time, since a higher workload could lead to more inappropriate changes and
higher rejection rate. By analyzing commit logs, we determined that there was not a
significant variation on developer workload, and thus this is not a factor that influences
our results.

We found that the revert rate significantly increased under rapid releases. In part,
this difference could be attributed to the absence of commit hooks before 2011, making
it harder for us to detect reverts from commit messages in this period. To mitigate this
threat, when detecting reverts from commit messages, we included variations of the term
“backout” that would not be accepted by the commit hook but were found when we read
a sample of the commit messages.

In a naive interpretation, the increasing revert rate supports the theory that rapid
releases lead to hurry and inappropriate changes. To better understand the results,
though, we showed the rejection rates under both traditional and rapid releases to Firefox
engineers and asked them to explain the difference. Their explanations included Mozilla’s
growth, the improvement of testing tools, and the adoption of integration repositories, as
detailed next.

A larger code base and more products. Some engineers explained the increase
in the overall revert rate by suggesting that because the code base grew over time, code
conflicts became more likely. The number of supported platforms also increased because
Firefox must support both new platforms, such as Windows 8, and older ones, such as
Windows XP. Also, new products emerged, such as Firefox for Android and Firefox OS,
that share code with the desktop Web browser. As one engineer explained,

We have a lot more stuff that can break, on more platforms, as well as more
tests—these days we don’t have everyone working on just Firefox. Code land-
ing for B2G [the Firefox OS] can break Fennec [Firefox for Android], for
example, and B2G devs don’t build and test on Fennec locally. Those kinds
of changes will be caught and backed out [reverted] when they hit the trees
[code repositories], not found beforehand.

The evolution of testing tools. Another engineer explained that the emergence of
better testing tools promoted earlier detection of problems and improved the detection
of problems that would have otherwise gone unnoticed, such as hard-to-detect memory
leaks:

Our automated testing has improved considerably since [release] 3.5. A num-
ber of memory-leak finding tools have been integrated into our test environ-
ments that are improving our early catch rate.

Integration repositories and revert culture. According to Firefox engineers, the
increasing revert rate was also due to the sheriff-managed integration repositories and
their effect on how developers test their code. Before 2011, because developers pushed
changes directly to Mozilla-Central, the changes had to be thoroughly tested to avoid
breaking the builds or introducing bugs. Since 2011, developers started to commit to



66 DISCUSSION

integration repositories, and the sheriff reverted problematic changes before merging them
to Mozilla-Central, thus keeping it stable. So, developers were encouraged to commit to
Mozilla-Inbound after having performed less testing. As someone stated in Mozilla’s wiki,

But breaking it [Mozilla-Inbound] rarely is ok. (...) Never breaking the tree
[code repository] means you’re running too many tests before landing [com-
mitting to the repository].3

Two Mozilla engineers reinforced this view:

In the “old days,” you were expected to have built, tested, done a Try build,
etc. before the patch landed.

The backout [revert] aggressiveness was even explicitly mentioned when we
switched.

We decided to further investigate the hypothesis that integration repositories and the
revert culture caused the increase in rejection rate. To this end, we split reverts into two
groups, early reverts and late reverts, and measured them separately. We discovered that
the early revert rate increased, while the late revert rate decreased. This result suggests
that problems that used to be detected during a Try build and, thus, before change
submission, are now detected during Mozilla-Inbound’s build, leading to early reverts.
To further interpret this result, we analyze the impact of the changes in revert rates on
both developers and users.

Impact on developers. Every revert induces rework by requiring development of
a new, improved change. However, in Mozilla’s case, the increase of early reverts did
not seem to induce significant overhead. Instead, it reflected a cultural shift toward
committing changes before testing them comprehensively, therefore reducing the effort
required to test changes. Such change was possible only because broken changes no
longer reached Mozilla-Central. Sheriffs also ensured that changes that break the build
were reverted as soon as possible, reducing the time in which the repository must be
closed:

I’d say amount of time spent testing patches before landing [pushing changes]
and amount of time wasted with trees [repositories] closed due to bustage [a
broken build] were [both] reduced.

Although all reverts induce rework, late reverts are severer. Problems that are not
resolved early are more likely to end up in a release. So, users might have to wait
another release cycle to receive the definitive change. Also, with integration repositories,
inappropriate commits that were not reverted early end up in Mozilla-Central, on which
developers base their work. By the time the commit is reverted, many other commits
might have depended on it. Therefore the shift toward earlier reverts suggests that the
sheriff-managed integration branches reduced the effort required to integrate changes.

3“Tree Rules/Integration,” available at 〈https://wiki.mozilla.org/Tree Rules/Integration〉.



6.5 GENERAL CONSIDERATIONS 67

Figure 6.3: Forces contributing to variations in early and late revert rate.

Impact on users. Although Mozilla’s move to rapid releases was a success from the
release-engineering perspective, it upset users because of frequent update notifications
and broken plug-in compatibility. As the then chair of Mozilla Foundation summarized
on her blog post,

We focused well on being able to deliver user and developer benefits on a much
faster pace. But we didn’t focus so effectively on making sure all aspects of
the product and ecosystem were ready.4

However, nowadays inappropriate changes have almost no effect on users’ perception
of quality. This is because, after being committed to Mozilla-Central, all changes go
through two other repositories, Mozilla-Aurora and Mozilla-Beta, where more tests occur
during two release cycles before they are released to the general public. So, only very
late reverts affect users, and these are rare under both traditional and rapid releases.

Figure 6.3 summarizes our understanding of the effects of the changes introduced by
Mozilla in 2011 on revert rate and related aspects. Three factors explain the increase of
early reverts. The adoption of integration repositories encourages developers to test less
their changes, leading to more inappropriate changes and more early reverts, and also
keeps the central repository from breaking often, which helps meeting the rapid release
schedule. Also, sheriffs prevent follow-up commits by reverting commits right away,
resulting in more early reverts and also keeping the central repository from breaking
often. Finally, better automated testing tools anticipate problems that would otherwise
be found during manual testing, reducing the late revert rate and increasing the early
revert rate.

6.5 GENERAL CONSIDERATIONS

In this section we discuss two topics that are not directly related to a specific research
goal. First, we discuss the relevance of this study to both open source and proprietary
software, and then we discuss the role of rejection and rework within software projects.

4M. Baker, “Rapid Release Follow-Up,” blog, 3 Oct. 2011; 〈http://blog.lizardwrangler.com/?p=
2996〉.



68 DISCUSSION

6.5.1 Open Source and Proprietary Software

In this study, we analyze open source projects from a single organization, the Mozilla
Foundation. Although the projects accept contributions from the community, most de-
velopers in those projects are Mozilla employees which work full-time on the projects.

We believe that this study is also relevant to closed-source, proprietary software
projects, since those projects can also use practices such as code review and automated
testing. Furthermore, proprietary projects are increasingly adopting practices typically
associated with open source projects (KALLIAMVAKOU et al., 2015).

The key aspects to replicating this study to a project are (i) the project’s adherence to
a process that includes the evaluation of changes, and (ii) the availability of high quality
data about the submission and rejection of changes. Those aspects are more important
than whether a project is open source or not. In this sense, projects with less structured
processes are less suitable for this study, even if they are open source.

6.5.2 What If All Rework Could Be Eliminated?

What would happen if all changes were appropriate since the first submission? At first,
the productivity would raise, since the time otherwise wasted with rework could be used
to implement new features. Also, code reviews and testing would become superfluous,
since there would not be problems to be detected.

We argue that, even in this hypothetical perfect world, it is not desirable to get rid
of code reviews and testing. Besides detecting problems, code reviews are a mecha-
nism to share knowledge about the source code and best practices (BACCHELLI; BIRD,
2013). They increase the socialization within a project and allow continuous evalua-
tion of the architecture and other code-related decisions. Furthermore, there is evidence
that test-driven development contributes to improve software design quality (JANZEN;
SAIEDIAN, 2008).

In summary, rejections are not entirely bad. While, on the one hand, a rejection
reveals that there are problems in a source code change, on the other hand it shows that
the project uses practices that raise the knowledge sharing, the socialization, and the
reasoning about design within a project.

6.6 LESSONS FOR PRACTITIONERS

This study provides lessons for practitioners who aim to reduce rework or release more
often, as described in the next two subsections.

6.6.1 Reduce Rework by Assessing Process Changes

Reducing rework in a project may require introducing practices or improving the process.
While this study does not offer specific advice to reduce rework, it can support continuous
improvement of software processes by providing new metrics to assess process quality. In
order to get more reliable metrics, it may be necessary to enforce conventions on how to
record important events in a change’s lifecycle (e.g., using commit hooks).



6.6 LESSONS FOR PRACTITIONERS 69

We suggest that project managers continuously measure rejection rate and introduce
practices and process improvements one at a time. After each introduction, they should
assess whether the rejection rate varied. Significant increases in the rejection rate may
signal problems in the process.

6.6.2 Moving Fast Without Breaking Things

In software-intensive markets, high competition pushes organizations to release new fea-
tures at a faster pace. One main concern is to avoid that an initial gain in release speed
results in process instability, contributing to poor quality and productivity loss in the long
term. By computing metrics and talking to Mozilla engineers, we were able to identify
two concrete measures taken by Mozilla that helped in keeping the process stable while
allowing it to move faster:

• Improve automated testing tools. Automated testing is used to detect prob-
lems very early in the process. The earlier problems are detected, the faster it is to
fix them and the earlier the fixes can be delivered to end users.

• Use integration repositories. It is ok to break the product more often, as long as
it does not affect other developers’ work. Integration repositories allow developers
to focus on writing code, while sheriffs ensure that low-quality code is filtered out
as soon as possible, before reaching the main source code repository.

While these two measures can be used to improve any project, the overhead involved
in putting them into practice is more justifiable under rapid releases, since in this context
it is important to keep the source code stable as often as possible. Having frequently
stable code is also important when Mozilla has to deliver a “chemspill” release, i.e., a
release that fixes critical security issues and, thus, should reach users as soon as possible.





Chapter

7
CONCLUSION

In this thesis, we sought to better understand change rejection and the resulting rework
in software projects. We investigated the impacts of inappropriate changes and the
variation in rework that resulted from a significant process change in projects developed
by the Mozilla Foundation. To support our goals, we proposed and evaluated techniques
to detect change rejection from issue reports and source code commits collected from a
project’s history.

We discovered that existing techniques to detect change rejection are imprecise and
generally do not agree with each other. We proposed a new technique to detect change
rejection in projects that adopt continuous integration, more specifically the practice of
reverting inappropriate commits. Although further analysis is needed, this technique
appears to be more precise than its alternatives.

We determined that inappropriate changes are common, appearing in almost one fifth
of the issues that require source code changes. Because of the rework they induce, they
also contribute to increasing the lifetime of the issues in a project.

While inappropriate changes and rework cannot be completely avoided, it is possi-
ble to prevent most of those changes from reaching end users by performing verification
tasks. We showed that the process adopted by Mozilla, with code reviews, daily auto-
mated testing, manual testing, and alpha and beta releases, prevents about 97% of the
inappropriate changes from reaching end users, even under short release cycles.

We observed that changes take more time to be submitted when they are inappropri-
ate, suggesting an association between issue difficulty, time to submission, and inappro-
priateness. We also showed that the time to submit an inappropriate change and the time
to reject it have little influence on the time required to write and submit the subsequent
change.

Process changes potentially affect inappropriate changes, rejection, and rework, for
better or for worse. We showed that, after Mozilla adopted rapid releases, a higher
proportion of commits were reverted. A naive interpretation would be that the tighter
schedule led developers to write more inappropriate changes. Upon further analysis, we

71



72 CONCLUSION

determined that, under rapid releases, most of the reverts occur early in the process.
This shift to earlier rejection is likely the result of improvements in testing tools and of
a recommendation for developers to spend less time testing with private builds, since,
under the new process, a change is only pushed to the central source code repository after
a successful build. Furthermore, we could not find evidence that inappropriate changes
result in more additional time under rapid releases than under traditional releases.

7.1 MAIN CONTRIBUTIONS

We believe that this study contributes both to scientific literature and to software de-
velopment practice in the following ways: (i) it proposes a new technique to detect
inappropriate changes and compares it with existing techniques; (ii) it quantifies the
impact of inappropriate changes on rework and product quality; and (iii) it shows how
inappropriate changes were impacted by process changes, specifically, rapid releases and
integration repositories.

Preventing and detecting inappropriate changes before they are integrated into a
final release are important problems in software engineering. In the research approach
known as software repository mining, software artifacts are analyzed to better understand
causes and effects of inappropriate changes. To achieve this goal, however, it is necessary
to detect inappropriate changes from historical data. Our results can be used to improve
those studies and to better assess threats to validity of previous studies that rely on the
detection of inappropriate changes.

While previous studies have measured the impacts of inappropriate changes using a
single rejection type—either negative reviews, supplementary changes, or issue reopening—
our study combines all rejection types in the same analysis. Also, we estimate the ad-
ditional time needed to resolve issues in a project because of inappropriate changes, for
each rejection type. Knowing in detail the impacts associated with inappropriate changes
supports informed decisions on improving the software development process.

Finally, our study helps evaluate the impacts of rapid releases in projects of worldwide
importance. The results should be useful for any organization that intends to adopt rapid
releases.

7.2 FUTURE WORK

Although we believe reverts are the best currently available indicator of inappropriate
changes (for projects in which reverting them is common practice), we did not gather
enough quantitative evidence to support this belief. In a future work, in order to evalu-
ate reverts, we may classify each issue in a sample according to whether it is associated
with inappropriate changes. The classification would be inferred by reading issue reports
and commit logs, and dubious cases would be discussed with developers and other re-
searchers. This effort would lead to an oracle for inappropriate changes, which could
be used to evaluate existing detection techniques and develop improved techniques, with
higher precision and recall.

A better technique to detect inappropriate changes can lead to improved empirical



7.2 FUTURE WORK 73

studies based on mining software repositories. For instance, one can compare the source
code of inappropriate changes with that of appropriate changes to identify distinctive
features. Another option is to measure the proportion of inappropriate changes within
each module of a software system to discover which modules are more fragile, i.e., more
likely to break the software when changed.

Some results in this thesis were not validated by developers. We may in the future ask
developers to interpret those results, using qualitative methods such as semi-structured
interviews and the Delphi method (DALKEY; HELMER, 1963). This approach would
contribute to reduce biases in the interpretation of quantitative results.

While comparing rejection types, we observed that, compared to changes that are
positively reviewed, changes that are negatively reviewed are more likely to lead to testing
failures. We could not find a reasonable explanation for this counterintuitive result. One
possible future work is to better understand the relationship between code reviews and
automated testing, two methods for early problem detection.

In this study we evaluated the impact of rapid releases and integration repositories
on change rejection. Measuring the variation of change rejection can be used to evaluate
other design and process aspects of software development, such as the adoption of test
driven development, distributed version control, or a microservices architecture.

For instance, one may hypothesize that modules that violate the prescribed architec-
ture for a system are more fragile, so changes in those modules are more likely to break
the software. One future work that we started to pursue is to test this hypothesis by com-
paring the proportion of inappropriate changes in modules that violate the architecture
and modules that conform to it.

In brief, with a more precise technique to detect inappropriate changes, such as the
one introduced in this work, researchers can better understand source code changes, a
centerpiece of software development. They can identify software modules and source
code features associated with rejection-prone changes, and also understand how process
changes can affect the rate at which inappropriate changes are produced and how it affects
rework and product quality.





Appendix

A
EMAILS EXCHANGED WITH MOZILLA ENGINEERS

This appendix contains emails exchanged with Mozilla engineers about preliminary results
of our research. To protect their privacy, we replaced their names with numbers.

75



Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>

Bug	reopening	and	short	release	cycles
8	messages

Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Mon,	Oct	28,	2013	at	2:09	PM
To:	firefox-dev@mozilla.org

I'm	studying	bug	reopening	as	part	of	my	PhD	thesis	at	Federal	University	of	Bahia,	Brazil,	and	I'd	like	to	get
feedback	from	the	community	about	some	interesting	results	I've	found	so	far	using	Firefox's	data.
I've	compared	Firefox's	bug	reports	before	and	after	the	project	adopted	6-week	release	cycles.	I've	found,	for
example,	that...

*	the	average	time	to	resolve	a	bug	after	it	has	been	reopened	dropped	from	77	days	(before)	to	32	days	(after);
*	the	reopening	rate	(%	of	fixed	bugs	that	are	eventually	reopened)	dropped	from	7.4%	(before)	to	4.5%	(after).

Two	2-year	periods	were	considered:	before	=	2009-03-22	up	to	2011-03-22,	and	after	=	2011-06-21	up	to	2013-
06-21.

The	first	result	seems	intuitive:	faster	releases	imply	bugs	are	fixed	faster.	However,	I'm	not	sure	about	why	the
reopening	rate	would	drop.	Do	you	have	any	theories?

[]s
Rodrigo

Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Mon,	Oct	28,	2013	at	8:37	PM
To:	dev-planning@lists.mozilla.org

[Quoted	text	hidden]
[Quoted	text	hidden]
The	first	result	seems	intuitive:	faster	releases	imply	bugs	are	fixed	faster.	However,	I'm	not	sure	about	why	the
reopening	rate	would	drop.	Does	anyone	have	any	theories?

[]s
Rodrigo

Developer	1 Mon,	Oct	28,	2013	at	8:44	PM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>
Cc:	dev-planning@lists.mozilla.org

On	Monday	2013-10-28	21:37	-0200,	Rodrigo	Rocha	Gomes	e	Souza	wrote:
>	The	first	result	seems	intuitive:	faster	releases	imply	bugs	are	fixed
>	faster.	However,	I'm	not	sure	about	why	the	reopening	rate	would	drop.	Does
>	anyone	have	any	theories?

Bug	reopening	rates	can	vary	substantially	as	a	result	of	changes	in
culture:		in	particular,	when	it	is	considered	correct	to	reopen	an
existing	bug	report	vs.	filing	a	new	bug	report.		I'm	skeptical	of
the	value	of	any	analysis	of	reopening	rate	that	doesn't	somehow
account	for	this.

Developer	2 Mon,	Oct	28,	2013	at	8:51	PM
To:	dev-planning@lists.mozilla.org

On	10/28/13,	4:37	PM,	Rodrigo	Rocha	Gomes	e	Souza	wrote:
The	first	result	seems	intuitive:	faster	releases	imply	bugs	are	fixed
faster.	However,	I'm	not	sure	about	why	the	reopening	rate	would	drop.	Does
anyone	have	any	theories?

Reopening	a	bug	report	suggests	that	the	bug	was	not	fixed	(entirely).	A	lower	reopening	rate	might	mean	that
users	are	just	filing	new	bug	reports	instead	of	reopening	existing	bug	reports.	New	users	might	not	know	about	old
bug	reports.

Perhaps,	Mozilla	developers	are	now	better	at	identifying	and	fixing	the	root	cause	for	bugs.	:)

You	might	also	compare	the	bug	states	before	and	after	reopening.	Some	users	will	reopen	bugs	that	were	closed

76 EMAILS EXCHANGED WITH MOZILLA ENGINEERS



"RESOLVED	WONTFIX"	or	"RESOLVED	WORKSFORME"	because	they	disagree	with	the	resolution.

Developer	3 Mon,	Oct	28,	2013	at	10:30	PM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>
Cc:	"dev.	planning"	<dev-planning@lists.mozilla.org>

The	change	in	reopening	rates	is	probably	a	result	of	us	switching	from	checking	stuff	in	to	mozilla-central	to
checking	it	in	on	mozilla-inbound.		When	we	landed	stuff	on	central	directly	bugs	would	be	closed	as	RESOLVED
FIXED	when	the	patches	landed,	but	if	they	broke	the	build	or	tests	the	patches	would	get	backed	out	and	the	bug
would	be	REOPENED.		Now	we	land	stuff	on	mozilla-inbound,	but	still	don't	mark	bugs	as	RESOLVED	FIXED	until
mozilla-inbound	gets	merged	to	mozilla-central.		And	we	only	merge	changesets	that	pass	all	the	tests,	so	stuff
now	"bounces"	without	ever	resolving	(and	hence	reopening)	the	bug.

Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Tue,	Oct	29,	2013	at	10:45	AM
To:	Developer	3
Cc:	"dev.	planning"	<dev-planning@lists.mozilla.org>

Thank	you	all!	The	results	are	preliminary	and	I'm	going	to	refine	the	analyses	with	your	feedback.

Regarding	the	bug	status,	I	only	counted	bugs	that	were	RESOLVED	FIXED	when	they	were	reopened,	so
disagreements	about	the	resolution	are	unlikely.
The	understanding	about	"reopen	an	existing	bug	report	vs.	filing	a	new	bug	report"	can	be	a	source	of
disagreement,	as	illustrated	by	the	discussion	at	https://groups.google.com/forum/#!topic/mozilla.dev.
platform/UnxndrIUIL4.	I'm	not	convinced,	though,	that	the	numbers	could	be	explained	by	a	cultural	change.

On	Mon,	Oct	28,	2013	at	10:30	PM,	Developer	3	wrote:
The	change	in	reopening	rates	is	probably	a	result	of	us	switching	from	checking	stuff	in	to	mozilla-central	to
checking	it	in	on	mozilla-inbound.		[...]

Hmm,	that's	interesting...	So,	when	did	the	switch	occur?	Together	with	the	train	model	or	after	that?

Now	we	land	stuff	on	mozilla-inbound,	but	still	don't	mark	bugs	as	RESOLVED	FIXED	until	mozilla-inbound	gets
merged	to	mozilla-central.		And	we	only	merge	changesets	that	pass	all	the	tests,	so	stuff	now	"bounces"	without
ever	resolving	(and	hence	reopening)	the	bug.

In	this	case	I	can	track	comments	that	include	a	link	to	hg.mozilla.org/integration/mozilla-inbound/rev/...	and	treat
them	as	if	the	resolution	was	changed	to	FIXED.	

I'm	not	sure,	however,	how	I	would	detect	reopening	in	this	case.	What	is	recorded	in	Bugzilla	when	a	patch
doesn't	pass	the	tests?	Is	there	any	flag	for	this	situation?	Or	people	just	comment	informally	on	the	bug	report?

[]s
Rodrigo

Developer	4 Tue,	Oct	29,	2013	at	6:26	PM
To:	dev-planning@lists.mozilla.org

>On	Mon,	Oct	28,	2013	at	10:30	PM,	Developer	3	wrote:
>
>>	The	change	in	reopening	rates	is	probably	a	result	of	us	switching	from
>>	checking	stuff	in	to	mozilla-central	to	checking	it	in	on	mozilla-inbound.
>>		[...]
>>
>
>Hmm,	that's	interesting...	So,	when	did	the	switch	occur?	Together	with	the
>train	model	or	after	that?

inbound	started	around	the	same	time	as	trains,	though	perhaps	offset	by
a	few	months.

>Now	we	land	stuff	on	mozilla-inbound,	but	still	don't	mark	bugs	as	RESOLVED
>>	FIXED	until	mozilla-inbound	gets	merged	to	mozilla-central.		And	we	only
>>	merge	changesets	that	pass	all	the	tests,	so	stuff	now	"bounces"	without
>>	ever	resolving	(and	hence	reopening)	the	bug.
>>
>

EMAILS EXCHANGED WITH MOZILLA ENGINEERS 77



>In	this	case	I	can	track	comments	that	include	a	link	to
>hg.mozilla.org/integration/mozilla-inbound/rev/...	and	treat	them	as	if	the
>resolution	was	changed	to	FIXED.
>
>I'm	not	sure,	however,	how	I	would	detect	reopening	in	this	case.	What	is
>recorded	in	Bugzilla	when	a	patch	doesn't	pass	the	tests?	Is	there	any	flag
>for	this	situation?	Or	people	just	comment	informally	on	the	bug	report?

usually	you'll	see	a	later	"backout"	rev,	then	another	rev	for	checking
it	back	in.		Not	sure	this	is	100%	accurate	though,	and	complicated	by
bugs	with	multiple	patches	that	land	at	different	times	(and	the
[leave-open]	whiteboard	tag	which	says	"I	checked	in	but	don't	resolve
it	as	fixed",	often	because	there	are	more	patches	to	land.

And	then	there	are	roc's	10-part	patch	landings....	;-)

Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Wed,	Oct	30,	2013	at	9:24	PM
To:	Developer	4
Cc:	dev-planning@lists.mozilla.org

On	Tue,	Oct	29,	2013	at	6:26	PM,	Developer	4	wrote:
usually	you'll	see	a	later	"backout"	rev,	then	another	rev	for	checking
it	back	in.		Not	sure	this	is	100%	accurate	though,	and	complicated	by
bugs	with	multiple	patches	that	land	at	different	times	(and	the
[leave-open]	whiteboard	tag	which	says	"I	checked	in	but	don't	resolve
it	as	fixed",	often	because	there	are	more	patches	to	land.

Yeah,	it	seems	complicated.	Anyway,	I	redid	the	analysis	considering	as	reopened	not	only	bugs	with	REOPENED
status,	but	also	all	bug	reports	containing	comments	that	match	the	(case-insensitive)	regexp	"back.{0,5}out"	(e.g.,
backout,	backed	out,	backing	out	etc.).

With	the	new	analysis,	the	reopening	rates	are	pretty	much	the	same	before	and	after	the	train	model.

Thank	you	again	for	the	feedback	and	let	me	know	if	you	have	any	other	thoughts	on	bug	reopening.

[]s
Rodrigo

78 EMAILS EXCHANGED WITH MOZILLA ENGINEERS



Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>

Review	and	bug	reopening
22	messages

Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Mon,	Feb	17,	2014	at	8:27	PM
To:	firefox-dev@mozilla.org

I've	been	doing	some	statistical	analyses	on	Firefox's	bug	reports	as	part	of	my	PhD	thesis,	and	the	community
feedback	has	been	essential	to	help	me	interpret	the	results.	I'd	like	to	share	some	new	results	and	ask	for	your
feedback	again:

--

Result	1:	in	Firefox	and	in	Firefox	for	Android,	bug	fixes	that	receive	at	least	one	review-	are	40-50%	more	likely	to
be	reopened	than	those	that	receive	only	review+.

Is	this	an	expected	result	for	you?	Why	is	that?	I've	thought	some	possible	explanations,	but	I'd	like	to	hear	your
hypotheses.

More	info:	http://rodrigorgs.github.io/blog/2014/02/07/the-curse-of-a-negative-review/

--

Result	2:	in	Firefox	(Desktop),	bug	fixes	that	receive	at	least	one	review+	are	45%	more	likely	to	be	reopened	than
those	that	don't	receive	any	review.

This	result	is	counterintuitive	(reviews	certainly	don't	cause	reopening,	right?),	but	probably	can	be	explained	by
the	criteria	used	to	choose	which	bugs	get	reviewed.	Maybe	risky	changes	are	more	likely	to	be	reviewed,	and	also
more	likely	to	cause	bug	reopening.	What	do	you	think?

Curiously,	in	Firefox	for	Android	there's	no	significant	difference	between	reviewed	and	non-reviewed	bugs	with
respect	to	reopening.

More	info:	http://rodrigorgs.github.io/blog/2014/02/12/are-reviews-worth-the-effort/

--

I'll	appreciate	any	feedback	on	these	results	or	any	thoughts	on	the	relationship	between	code	review	and	bug
reopening.

[]s
Rodrigo

Developer	5 Mon,	Feb	17,	2014	at	9:04	PM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>

On	17/02/2014	23:27,	Rodrigo	Rocha	Gomes	e	Souza	wrote:
Result	2:	in	Firefox	(Desktop),	bug	fixes	that	receive	at	least	one	review+	are	45%	more	likely	to	be	reopened
than	those	that	don't	receive	any	review.

This	result	is	counterintuitive	(reviews	certainly	don't	cause	reopening,	right?),	but	probably	can	be	explained	by
the	criteria	used	to	choose	which	bugs	get	reviewed.	Maybe	risky	changes	are	more	likely	to	be	reviewed,	and
also	more	likely	to	cause	bug	reopening.	What	do	you	think?

Curiously,	in	Firefox	for	Android	there's	no	significant	difference	between	reviewed	and	non-reviewed	bugs	with
respect	to	reopening.

More	info:	http://rodrigorgs.github.io/blog/2014/02/12/are-reviews-worth-the-effort/

What	was	the	sample	size	for	bugs	that	were	marked	'fixed'	and	had	no	reviews	(and	what	about	the	ones	that
did)?	Did	they	have	commits?	In	principle,	any	commit	in	fx	desktop	should	have	gone	through	a	review;	the	ones
that	don't	(usually	comment	fixes	and	such)	would	be	a	tiny	minority.

I	can't	think	of	any	bug	that	I've	recently	seen	closed	as	'fixed'	that	didn't	have	attachments	with	a	review+,	except
those	that	were	fixed	by	other	bugs	(and	none	of	those	were	reopened).	The	latter	would	explain	this	result,	but	it

EMAILS EXCHANGED WITH MOZILLA ENGINEERS 79



would	also	render	it	essentially	meaningless	as	to	how	'effective'	reviews	are,	because	it	means	your	sampling
didn't	actually	correlate	reviews	with	the	closing	of	the	bugs	they	fixed	correctly.

Developer	5 Mon,	Feb	17,	2014	at	9:05	PM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>
Cc:	Firefox	Dev	<firefox-dev@mozilla.org>

(second	time	to	Rodrigo;	apologies,	I	forgot	to	CC	the	list)

On	17/02/2014	23:27,	Rodrigo	Rocha	Gomes	e	Souza	wrote:
Result	2:	in	Firefox	(Desktop),	bug	fixes	that	receive	at	least	one
review+	are	45%	more	likely	to	be	reopened	than	those	that	don't
receive	any	review.

This	result	is	counterintuitive	(reviews	certainly	don't	cause
reopening,	right?),	but	probably	can	be	explained	by	the	criteria	used
to	choose	which	bugs	get	reviewed.	Maybe	risky	changes	are	more	likely
to	be	reviewed,	and	also	more	likely	to	cause	bug	reopening.	What	do
you	think?

Curiously,	in	Firefox	for	Android	there's	no	significant	difference
between	reviewed	and	non-reviewed	bugs	with	respect	to	reopening.

More	info:
http://rodrigorgs.github.io/blog/2014/02/12/are-reviews-worth-the-effort/

[Quoted	text	hidden]

Developer	6 Mon,	Feb	17,	2014	at	9:22	PM
To:	firefox-dev@mozilla.org

On	2/17/14	3:27	PM,	Rodrigo	Rocha	Gomes	e	Souza	wrote:

Result	1:	in	Firefox	and	in	Firefox	for	Android,	bug	fixes	that	receive
at	least	one	review-	are	40-50%	more	likely	to	be	reopened	than	those
that	receive	only	review+.

Is	this	an	expected	result	for	you?	Why	is	that?	I've	thought	some
possible	explanations,	but	I'd	like	to	hear	your	hypotheses.

My	first	guess	would	be	that	this	could	be	skewed	by	small/easy	changes	--	they'd	be	less	likely	to	cause	fallout,
and	more	likely	to	pass	review	the	first	time.	It	might	be	interesting	to	see	if	reopening	is	correlated	with	the	size	(or
number-of-lines	changed)	in	the	patch.

The	other	question	is	what	reopening	really	indicates	--	I'd	assume	that	it	usually	happens	very	quickly	(as	a	result
of	some	unexpected	test	failure	upon	first	landing),	and	comparatively	rarely	due	to	Nightly	users	finding	a	problem
severe	enough	to	result	in	backing	out	the	patch.

It	might	be	useful	to	compare	reopening	to	the	number	of	bugs	added	to	the	"depends	on"	field	after	landing.	The
usual	Bugzilla	pattern	is	to	only	reopen	/	backout	a	bug	if	it	caused	a	major	regression	or	fundamentally	failed	to	fix
the	problem.	Otherwise	regressions	are	simply	dealt	with	in	the	bugs	reporting	them	(and	marked	as
dependencies	so	we	can	track	them).

Result	2:	in	Firefox	(Desktop),	bug	fixes	that	receive	at	least	one
review+	are	45%	more	likely	to	be	reopened	than	those	that	don't	receive
any	review.

This	is	an	odd	apples-to-oranges	comparison,	since	the	vast	majority	(essentially	all)	of	code	changes	require	a
review.	I'd	suspect	all	you're	seeing	here	are	tons	of	user	bugs	being	closed	as	WORKSFORME	/	INVALID	(or
FIXED	by	some	other	bug,	etc),	and	reopening	is	somewhat	infrequent	for	that	(usually	a	result	of	an
argumentative	reporter	;).

Developer	7 Mon,	Feb	17,	2014	at	9:22	PM
To:	Developer	5

80 EMAILS EXCHANGED WITH MOZILLA ENGINEERS



Cc:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>,	Firefox	Dev	<firefox-dev@mozilla.org>

>>	This	result	is	counterintuitive	(reviews	certainly	don't	cause
>>	reopening,	right?),	but	probably	can	be	explained	by	the	criteria	used
>>	to	choose	which	bugs	get	reviewed.	Maybe	risky	changes	are	more	likely
>>	to	be	reviewed,	and	also	more	likely	to	cause	bug	reopening.	What	do
>>	you	think?

I	haven't	worked	in	any	component	within	Mozilla	that	doesn't	require	code	review	for	all	non-trivial	changes.

There	are	some	missing	details	about	your	methodology,	but	I	think	your	conclusions	are	flawed	for	two	reasons:

1.	In	some	components,	the	majority	of	work	is	not	conducted	through	Bugzilla	attachments	and	review	flags.	That
is:	your	use	of	Bugzilla	review	flags	as	an	indicator	for	whether	code	has	been	reviewed	is	incorrect.

2.	Some	bugs	that	are	marked	RESOLVED	FIXED	do	not	have	attachments.	They	might	be	procedural,	analytical,
fixed	by	some	other	issue	but	not	a	dupe,	etc.	That	is,	your	use	of	the	resolution	of	a	bug	as	an	indicator	for	code
landing	is	incorrect.

You	note	that	84%	of	bugs	in	Firefox	for	Android	are	marked	as	RESOLVED	with	a	review	flag.	I	would	contend
that	that	means	that	~16%	of	resolved	bugs	didn't	involve	landing	code,	not	that	16%	of	our	patches	landed	without
review.	(You	don't	say	whether	you	look	for	bugs	with	patches	but	no	review,	how	you	handle	bugs	with	reviewed
patches	that	have	been	obsoleted	by	new	patches,	whether	you	look	for	a	target	milestone,	etc.)

You	might	want	to	redo	this	analysis	looking	at	commit	logs,	searching	for	r=me,	r=trivial,	r=none,	a=borkage,
a=test-only,	etc.	to	find	commits	that	landed	without	review.

I	agree	with	part	of	your	analysis,	though:	it's	more	likely	that	trivial	commits	land	without	a	future	reopening,
because	they're	trivial.

Developer	7 Mon,	Feb	17,	2014	at	9:28	PM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>
Cc:	Firefox	Dev	<firefox-dev@mozilla.org>

>	You	might	want	to	redo	this	analysis	looking	at	commit	logs,	searching	for	r=me,	r=trivial,	r=none,	a=borkage,
a=test-only,	etc.	to	find	commits	that	landed	without	review.

I	spent	five	minutes	doing	this.

Commits	considered:					13776
r=me:																					160
r=self:																					0
r=none:																					0
r=trivial:																	20
Merges,	backouts,	etc:		~2400
No	r=:																				386

Conclusion:	recent	fx-team	has	a	4%	non-review	rate.

Developer	7 Mon,	Feb	17,	2014	at	9:36	PM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>
Cc:	Firefox	Dev	<firefox-dev@mozilla.org>

>	No	r=:																				386

Note	that	some	of	these	are	indeed	trivial	and/or	follow-ups:

					No	bug	-	Alphabetize	robocop.ini.	DONTBUILD
					Really	fix	whitespace	change	made	during	conflict	resolution	(no	bug)	:-)
					Fix	whitespace	changes	made	during	conflict	resolution	(no	bug)	DONTBUILD
					Bug	935277	-	Fix	disabling	so	it	disables	the	correct	test

Some	are	kinda-automated:

EMAILS EXCHANGED WITH MOZILLA ENGINEERS 81



					Bug	956129	-	Uplift	Addon	SDK	to	Firefox
					Bug	942207:	Update	NSPR	to	NSPR_4_10_3_BETA2.	Includes	changes	for

And	many	are	procedural:

					Bug	908695	followup,	touch	CLOBBER	because	bug	928195
					no	bug	-	touch	the	CLOBBER	file	to	avoid	"configure	change"	bustage.
					Merging	in	version	bump	NO	BUG

so	I'd	guess	the	rate	of	landing	code	that	actually	ships	(not	testing	or	build	harness)	without	review	is	~1-2%,
perhaps	even	lower.

As	such,	if	you're	looking	to	evaluate	the	impact	of	code	review	on	fixes	for	bugs	that	actually	didn't	get	fixed,	and
thus	were	reopened,	you	probably	shouldn't	be	studying	Firefox	--	recent	commits	to	the	mozilla-central	codebase
appear	to	have	about	99%	review	coverage.

Developer	8 Tue,	Feb	18,	2014	at	5:58	AM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>
Cc:	firefox-dev	<firefox-dev@mozilla.org>

On	Mon,	Feb	17,	2014	at	3:27	PM,	Rodrigo	Rocha	Gomes	e	Souza
<rodrigorgs@gmail.com>	wrote:
>
>	Result	1:	in	Firefox	and	in	Firefox	for	Android,	bug	fixes	that	receive	at
>	least	one	review-	are	40-50%	more	likely	to	be	reopened	than	those	that
>	receive	only	review+.

Another	complicating	factor	is	that	many	people	are	reluctant	to	give
r-	on	patches	because	it	feels	too	blunt.	If	they	didn't	like	the
patch,	they	might	just	clear	the	review	flag,	or	alternatively	give	f+
instead.

Developer	9 Tue,	Feb	18,	2014	at	1:47	PM
To:	firefox-dev@mozilla.org

[Quoted	text	hidden]
Count	me	as	one	of	these.		My	wife	is	an	academic	and	I	was	trying	to	explain	to	her	that	within	my	working	set,	r-
is	a	very	strong	sign	that	your	approach,	rather	than	your	implementation,	is	wrong;	she's	used	to	journal	review,
so	it	seemed	rather	quaint	to	her.

Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Tue,	Feb	18,	2014	at	4:01	PM
To:	firefox-dev@mozilla.org

Wow,	thanks	a	lot	for	your	feedback.

Just	to	clarify	the	methodology,	I	analysed	RESOLVED	FIXED	bugs	from	2001-04-07	to	2013-08-10	(Firefox),	and
from	2008-09-11	to	2013-06-03	(Firefox	for	Android).

However,	I	didn't	look	at	Bugzilla	attachments	(my	data	set	doesn't	contain	them)	neither	at	the	Mercurial	repo.	I
assumed	all	RESOLVED	FIXED	bugs	included	or	should	have	included	patches,	which	now	I	see	isn't	true.

Also,	I	incorrectly	assumed	that	all	reviews	were	recorded	in	Bugzilla	using	review+/-	flags.

I'm	starting	to	look	at	the	Mercurial	repo	to	find	more	info	about	bugs.	It's	great	to	see	that	commit	messages	are
quite	consistent	and	informative.	

I	assume	r=foo	means	that	the	patch	was	reviewed	positively	by	foo	before	being	landed.	Correct?

##	Doubts

What	does	a=foo	mean?

Besides	a=...,	r=...,	sr=...,	f=...,	what	other	"commit	flags"	are	consistently	used	in	commit	messages?	Is	this

82 EMAILS EXCHANGED WITH MOZILLA ENGINEERS



documented	anywhere?

Do	you	have	any	tool	that	picks	a=...	and	r=...	from	the	log	(other	than	grep	and	wc)	and	do	something	useful	with
this	information?

Is	there	any	other	place	where	I	can	find	records	of	code	reviews,	such	as	mailing	lists	or	a	web	code	review	tool
(e.g.,	Gerrit)?

The	other	question	is	what	reopening	really	indicates	--	I'd	assume	that	it	usually	happens	very	quickly	(as	a
result	of	some	unexpected	test	failure	upon	first	landing)

Aren't	bugs	marked	FIXED	only	after	the	tests	pass?

Another	complicating	factor	is	that	many	people	are	reluctant	to	give
r-	on	patches	because	it	feels	too	blunt.	If	they	didn't	like	the
patch,	they	might	just	clear	the	review	flag,	or	alternatively	give	f+
instead.

What's	f+?	feedback+?	
I'll	rerun	my	analysis	looking	for	f+	and	clearing	of	the	review	flag.

##	Comments

As	such,	if	you're	looking	to	evaluate	the	impact	of	code	review	on	fixes	for	bugs	that	actually	didn't	get	fixed,
and	thus	were	reopened,	you	probably	shouldn't	be	studying	Firefox	--	recent	commits	to	the	mozilla-central
codebase	appear	to	have	about	99%	review	coverage.

This	is	truly	amazing!
But	you're	right,	it	makes	Firefox	a	poor	choice	for	this	particular	kind	of	analysis.

[regarding	the	influence	of	review-	on	reopening:]	My	first	guess	would	be	that	this	could	be	skewed	by
small/easy	changes	--	they'd	be	less	likely	to	cause	fallout,	and	more	likely	to	pass	review	the	first	time.	It	might
be	interesting	to	see	if	reopening	is	correlated	with	the	size	(or	number-of-lines	changed)	in	the	patch.

Yeah,	you're	probably	right.	Since	I	don't	have	Bugzilla	attachment	data,	I'll	try	to	get	this	info	from	the	Mercurial
repo.

Thank	you	again	for	your	feedback.

[]s
Rodrigo

Developer	10 Tue,	Feb	18,	2014	at	5:47	PM
To:	Developer	9
Cc:	firefox-dev@mozilla.org

All	of	this	boils	down	to	the	style	of	the	reviewer.	I've	found	it's	really	quite	different	based	on	the
reviewer+reviewee	pairing.	I	know	the	people	who	won't	be	bothered	when	I	mark	a	r-,	but	if	it's	a	new	contributor	I
may	shift	it	to	a	f+.	Over	time	I've	strayed	away	from	clearing	the	review	flag	because	it	makes	it	harder	to	glance
at	a	bug	and	see	if	a	peer	has	looked	at	a	patch	(as	compared	to	a	patch	that	gets	uploaded	and	no	request	for
feedback/review	is	ever	placed).

Sometimes	if	I	have	a	lingering	question	about	a	patch	I	will	reply	with	some	written	feedback	but	leave	the	review
flag	present	as	a	tip	that	I	may	grant	review	if	there	is	a	reasonable	response	to	the	question.

Developer	11 Tue,	Feb	18,	2014	at	6:03	PM
To:	firefox-dev@mozilla.org

On	02/17/2014	04:22	PM,	Developer	6	wrote:
>>	Result	2:	in	Firefox	(Desktop),	bug	fixes	that	receive	at	least	one
>>	review+	are	45%	more	likely	to	be	reopened	than	those	that	don't	receive
>>	any	review.
>
>	This	is	an	odd	apples-to-oranges	comparison,	since	the	vast	majority
>	(essentially	all)	of	code	changes	require	a	review.	I'd	suspect	all
>	you're	seeing	here	are	tons	of	user	bugs	being	closed	as	WORKSFORME	/

EMAILS EXCHANGED WITH MOZILLA ENGINEERS 83



>	INVALID	(or	FIXED	by	some	other	bug,	etc),	and	reopening	is	somewhat
>	infrequent	for	that	(usually	a	result	of	an	argumentative	reporter	;)

Side	note:	I	wonder	if	Rodrigo's	script	looks	at	obsolete	attachments,
when	checking	for	reviewed	patches?

If	it	doesn't,	that	would	account	for	some	of	these	superficially
"unreviewed"	bug	fixes.

Background:	a	somewhat	common	workflow	is:
	a)	Assignee	posts	patch	v1,	with	review	request
	b)	Reviewer	marks	r+,	and	asks	for	a	few	changes
	c)	Assignee	uploads	patch	v2,	marks	patch	v1	obsolete,	and	tags	bug	as
"checkin-needed"
	d)	Sheriff	lands	the	patch	and	marks	the	bug	FIXED.

This	leaves	the	bug	looking	like	it	has	been	fixed	without	any	reviewed
patches,	*unless*	you	show	obsolete	attachments.

Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Tue,	Feb	18,	2014	at	7:19	PM
To:	Developer	11
Cc:	firefox-dev@mozilla.org

On	Tue,	Feb	18,	2014	at	6:03	PM,	Developer	11	wrote:
Side	note:	I	wonder	if	Rodrigo's	script	looks	at	obsolete	attachments,
when	checking	for	reviewed	patches?

In	fact	the	script	looks	at	the	bug	history	page	(e.g.,	https://bugzilla.mozilla.org/show_activity.cgi?id=167180),	so	it
can	see	both	reviews	(for	obsolete	patch	v1	and	for	patch	v2).

[]s
Rodrigo

Developer	7 Wed,	Feb	19,	2014	at	5:32	PM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>
Cc:	firefox-dev@mozilla.org,	Developer	14

I	assume	r=foo	means	that	the	patch	was	reviewed	positively	by	foo	before	being	landed.	Correct?

Yes,	modulo	my	earlier	point	about	r=none,	r=me,	r=trivial.

What	does	a=foo	mean?

Approval.	Either	for	landing	on	an	upstream	branch	(Aurora,	Beta,	Release,	ESR),	on	a	closed	tree	or	under
another	restriction	(a=test-only,	a=java-only,	a=bustage),	or	to	justify	no	review	(a=doc-only).

Do	you	have	any	tool	that	picks	a=...	and	r=...	from	the	log	(other	than	grep	and	wc)	and	do
something	useful	with	this	information?

You	should	read	this.

http://gregoryszorc.com/blog/2013/11/08/using-mercurial-to-query-mozilla-metadata/

Is	there	any	other	place	where	I	can	find	records	of	code	reviews,	such	as	mailing	lists	or	a	web	code
review	tool	(e.g.,	Gerrit)?

Many	or	most	reviews	take	place	on	Bugzilla.

84 EMAILS EXCHANGED WITH MOZILLA ENGINEERS



There	is	also	a	tiny	minority	in	ReviewBoard:	http://reviewboard.allizom.org/

a	bunch	scattered	across	a	few	hundred	GitHub	repos,	and	some	take	place	informally	over	IRC	or	over-the-
shoulder	in	real	life.

The	other	question	is	what	reopening	really	indicates	--	I'd	assume	that	it	usually	happens	very
quickly	(as	a	result	of	some	unexpected	test	failure	upon	first	landing)

Aren't	bugs	marked	FIXED	only	after	the	tests	pass?

No.	They're	marked	as	FIXED	when	they're	done	and	merged	to	mozilla-central.	They're	marked	as	VERIFIED
after	someone	else	has	checked	that	things	worked.	They're	backed	out,	often	on	an	integration	branch	prior	to
being	marked	as	FIXED,	if	they	break	tests.

But	note	that	this	use	of	the	bug	tracker	varies	over	time,	over	components,	under	the	use	of	'twigs'	(separate
project	branches	—	do	you	mark	as	RESOLVED	when	it	hits	the	twig,	or	when	the	twig	merges?),	and	has
gradually	converged	on	the	current	approach	after	mozilla-inbound	was	created.

What's	f+?	feedback+?	

Yes.

Developer	5 Wed,	Feb	19,	2014	at	5:34	PM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>

On	18/02/2014	19:01,	Rodrigo	Rocha	Gomes	e	Souza	wrote:

Wow,	thanks	a	lot	for	your	feedback.

Just	to	clarify	the	methodology,	I	analysed	RESOLVED	FIXED	bugs	from	2001-04-07	to	2013-08-10
(Firefox),	and	from	2008-09-11	to	2013-06-03	(Firefox	for	Android).

However,	I	didn't	look	at	Bugzilla	attachments	(my	data	set	doesn't	contain	them)	neither	at	the
Mercurial	repo.	I	assumed	all	RESOLVED	FIXED	bugs	included	or	should	have	included	patches,
which	now	I	see	isn't	true.

Also,	I	incorrectly	assumed	that	all	reviews	were	recorded	in	Bugzilla	using	review+/-	flags.

I'm	starting	to	look	at	the	Mercurial	repo	to	find	more	info	about	bugs.	It's	great	to	see	that	commit
messages	are	quite	consistent	and	informative.	

I	assume	r=foo	means	that	the	patch	was	reviewed	positively	by	foo	before	being	landed.	Correct?

Yes.

##	Doubts

What	does	a=foo	mean?

approved	for	landing	by	foo.	Usually	only	used	on	release/beta/aurora	branches,	however...

Besides	a=...,	r=...,	sr=...,	f=...,	what	other	"commit	flags"	are	consistently	used	in	commit	messages?
Is	this	documented	anywhere?

Nope.	It's	informal.	There	is	not,	in	fact,	even	a	commit	hook	that	checks	for	these.

Do	you	have	any	tool	that	picks	a=...	and	r=...	from	the	log	(other	than	grep	and	wc)	and	do
something	useful	with	this	information?

EMAILS EXCHANGED WITH MOZILLA ENGINEERS 85



Not	to	my	knowledge.

Is	there	any	other	place	where	I	can	find	records	of	code	reviews,	such	as	mailing	lists	or	a	web
code	review	tool	(e.g.,	Gerrit)?

There's	firefox-reviewers...	don't	know	to	what	extent	that	is	partitioned	enough	to	work	for	your	usecase.

https://mail.mozilla.org/pipermail/firefox-reviewers/2014-February/date.html

The	other	question	is	what	reopening	really	indicates	--	I'd	assume	that	it	usually	happens	very
quickly	(as	a	result	of	some	unexpected	test	failure	upon	first	landing)

Aren't	bugs	marked	FIXED	only	after	the	tests	pass?

Bugs	are	normally	marked	FIXED	when	the	relevant	commits	land	on	mozilla-central.	Usually,	but	not	always,	that
means	they	first	landed	on	an	integration	branch	such	as	mozilla-inbound/fx-team,	and	passed	tests	there.
However,	there	have	been	cases	where	it's	taken	some	time	to	realize	that	particular	commits	broke	tests,	usually
because	(a)	those	tests	were	failing	randomly	relatively	frequently	already,	or	(b)	they	only	broke	tests	on	very
limited	sets	of	build	configurations.	Then	there's	the	fact	that	our	tests	aren't	exhaustive.	And	then	there's	the	fact
that	some	bugs	are	just	marked	FIXED	when	they	are	fixed	by	some	other	commit	and	we	know	what	fixed	the
issue.

Another	complicating	factor	is	that	many	people	are	reluctant	to	give
r-	on	patches	because	it	feels	too	blunt.	If	they	didn't	like	the
patch,	they	might	just	clear	the	review	flag,	or	alternatively	give	f+
instead.

What's	f+?	feedback+?	

Yes.

Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Wed,	Feb	19,	2014	at	6:32	PM
To:	Developer	5

Thank	you	very	much	for	the	clarification,	Developer	5.	

Maybe	you	wanted	to	send	your	email	to	firefox-dev?	(you	sent	it	just	to	me)

[]s
Rodrigo

On	Wed,	Feb	19,	2014	at	5:34	PM,	Developer	5	wrote:
On	18/02/2014	19:01,	Rodrigo	Rocha	Gomes	e	Souza	wrote:

I	assume	r=foo	means	that	the	patch	was	reviewed	positively	by	foo	before	being	landed.	Correct?

Yes.

Developer	5 Wed,	Feb	19,	2014	at	6:37	PM
To:	Firefox	Dev	<firefox-dev@mozilla.org>

On	18/02/2014	19:01,	Rodrigo	Rocha	Gomes	e	Souza	wrote:

Wow,	thanks	a	lot	for	your	feedback.

Just	to	clarify	the	methodology,	I	analysed	RESOLVED	FIXED	bugs	from	2001-04-07	to	2013-08-10
(Firefox),	and	from	2008-09-11	to	2013-06-03	(Firefox	for	Android).

However,	I	didn't	look	at	Bugzilla	attachments	(my	data	set	doesn't	contain	them)	neither	at	the
Mercurial	repo.	I	assumed	all	RESOLVED	FIXED	bugs	included	or	should	have	included	patches,
which	now	I	see	isn't	true.

Also,	I	incorrectly	assumed	that	all	reviews	were	recorded	in	Bugzilla	using	review+/-	flags.

86 EMAILS EXCHANGED WITH MOZILLA ENGINEERS



I'm	starting	to	look	at	the	Mercurial	repo	to	find	more	info	about	bugs.	It's	great	to	see	that	commit
messages	are	quite	consistent	and	informative.	

I	assume	r=foo	means	that	the	patch	was	reviewed	positively	by	foo	before	being	landed.	Correct?

Yes.

##	Doubts

What	does	a=foo	mean?

approved	for	landing	by	foo.	Usually	only	used	on	release/beta/aurora	branches,	however...

Besides	a=...,	r=...,	sr=...,	f=...,	what	other	"commit	flags"	are	consistently	used	in	commit	messages?
Is	this	documented	anywhere?

Nope.	It's	informal.	There	is	not,	in	fact,	even	a	commit	hook	that	checks	for	these.

Do	you	have	any	tool	that	picks	a=...	and	r=...	from	the	log	(other	than	grep	and	wc)	and	do
something	useful	with	this	information?

Not	to	my	knowledge.

Is	there	any	other	place	where	I	can	find	records	of	code	reviews,	such	as	mailing	lists	or	a	web
code	review	tool	(e.g.,	Gerrit)?

There's	firefox-reviewers...	don't	know	to	what	extent	that	is	partitioned	enough	to	work	for	your	usecase.

https://mail.mozilla.org/pipermail/firefox-reviewers/2014-February/date.html

The	other	question	is	what	reopening	really	indicates	--	I'd	assume	that	it	usually	happens	very
quickly	(as	a	result	of	some	unexpected	test	failure	upon	first	landing)

Aren't	bugs	marked	FIXED	only	after	the	tests	pass?

Bugs	are	normally	marked	FIXED	when	the	relevant	commits	land	on	mozilla-central.	Usually,	but	not	always,	that
means	they	first	landed	on	an	integration	branch	such	as	mozilla-inbound/fx-team,	and	passed	tests	there.
However,	there	have	been	cases	where	it's	taken	some	time	to	realize	that	particular	commits	broke	tests,	usually
because	(a)	those	tests	were	failing	randomly	relatively	frequently	already,	or	(b)	they	only	broke	tests	on	very
limited	sets	of	build	configurations.	Then	there's	the	fact	that	our	tests	aren't	exhaustive.	And	then	there's	the	fact
that	some	bugs	are	just	marked	FIXED	when	they	are	fixed	by	some	other	commit	and	we	know	what	fixed	the
issue.

Another	complicating	factor	is	that	many	people	are	reluctant	to	give
r-	on	patches	because	it	feels	too	blunt.	If	they	didn't	like	the
patch,	they	might	just	clear	the	review	flag,	or	alternatively	give	f+
instead.

What's	f+?	feedback+?	

Yes.

Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Wed,	Feb	19,	2014	at	7:00	PM
To:	Developer	7
Cc:	firefox-dev@mozilla.org,	Developer	14

On	Wed,	Feb	19,	2014	at	5:32	PM,	Developer	7	wrote:

Do	you	have	any	tool	that	picks	a=...	and	r=...	from	the	log	(other	than	grep	and	wc)	and	do
something	useful	with	this	information?

You	should	read	this.

EMAILS EXCHANGED WITH MOZILLA ENGINEERS 87



http://gregoryszorc.com/blog/2013/11/08/using-mercurial-to-query-mozilla-metadata/

Thanks!	There's	a	lot	of	inside	knowledge	in	that	source	code.	It'll	certainly	be	very	useful	for	me.

Well,	thank	you	all	for	the	precious	feedback.	I've	been	studying	Mozilla's	development	process	and	Bugzilla
usage,	but	there's	always	a	lot	to	discover.

Now	I	have	to	digest	all	this	new	information	to	refine	my	current	analyses	and	design	new	ones.	I'll	let	you	know
when	I	have	new	results	that	may	interest	you.

[]s
Rodrigo

Developer	8 Thu,	Feb	20,	2014	at	5:20	AM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>
Cc:	firefox-dev	<firefox-dev@mozilla.org>

On	Tue,	Feb	18,	2014	at	11:01	AM,	Rodrigo	Rocha	Gomes	e	Souza
<rodrigorgs@gmail.com>	wrote:
>
>	Besides	a=...,	r=...,	sr=...,	f=...,	what	other	"commit	flags"	are
>	consistently	used	in	commit	messages?	Is	this	documented	anywhere?

You	occasionally	see	rs=...,	which	is	short	for	"rubber-stamp",	which
roughly	means	"I	glanced	at	this	but	didn't	really	look	at	it
closely".	I	think	it's	usually	used	for	short	patches,	additions	of
tests,	thing	like	that.	Not	an	important	case,	but	just	in	case	you
were	wondering...

Developer	12 Thu,	Feb	20,	2014	at	11:11	AM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>

Rodrigo	Rocha	Gomes	e	Souza	wrote:

However,	I	didn't	look	at	Bugzilla	attachments	(my	data	set	doesn't	contain	them)	neither	at	the
Mercurial	repo.	I	assumed	all	RESOLVED	FIXED	bugs	included	or	should	have	included	patches,
which	now	I	see	isn't	true.

do	you	know	about	https://bugzilla.mozilla.org/page.cgi?id=researchers.html	?

Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Thu,	Feb	20,	2014	at	11:38	AM
To:	Developer	12

On	Thu,	Feb	20,	2014	at	11:11	AM,	Developer	12	wrote:
do	you	know	about	https://bugzilla.mozilla.org/page.cgi?id=researchers.html	?

No,	I	didn't.	Thanks,	I'll	contact	Mike.

[]s
Rodrigo	

Developer	13 Thu,	Feb	20,	2014	at	11:20	PM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>
Cc:	firefox-dev@mozilla.org

I've	not	seen	anyone	mention	that	Firefox	for	Android	has	a	much	more	brittle	testing	infrastructure.	It	is	somewhat
common	for	a	fix	to	cause	intermittent	oranges.	Robocop	is	the	main	UI	testing	suite	https://wiki.mozilla.org/Auto-
tools/Projects/Robocop

88 EMAILS EXCHANGED WITH MOZILLA ENGINEERS



Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>

Backouts	due	to	test	failures
7	messages

Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Mon,	Jun	2,	2014	at	7:34	PM
To:	firefox-dev@mozilla.org

I'm	trying	to	measure	the	proportion	of	backouts	due	to	failing	automated	tests	before	and	after	the	train	model.	I
identify	such	backouts	by	looking	for	the	words	"backout"	(or	a	variation	of	it)	and	"test".	Example:
				Backout	bug	504524	due	to	test	failure

Is	it	safe	to	assume	that	such	commit	messages	always	refer	to	automated	tests?	Is	there	any	case	in	which	a
backout	commit	uses	the	word	"test"	to	refer	to	manual	test?

[]s
Rodrigo

Developer	5 Mon,	Jun	2,	2014	at	7:43	PM
To:	firefox-dev@mozilla.org

[Quoted	text	hidden]
That	seems	unlikely	to	me.	However,	I	don't	think	backouts	necessarily	have	the	word	"test"	in	them	when	they	are
enacted	due	to	test	failures.	In	other	words,	I	suspect	you	will	have	false	negatives	rather	than	false	positives	if	you
rely	on	parsing	log	messages.

Developer	14 Mon,	Jun	2,	2014	at	7:55	PM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>,	firefox-dev@mozilla.org

[Quoted	text	hidden]
No.	I'd	look	at	file	names.	(But	even	that	isn't	perfect.)

#	Commit	messages	with	"backout"	that	also	touched	a	file	with	"test"
$	hg	log	-r	'desc(backout)	&	file("**test**")'

See	`hg	help	patterns`,	`hg	help	revset`,	and	`hg	help	template`	to	construct	a	powerful	query.	Templating	also
contains	conditional	statements,	so	you	can	make	Mercurial	emit	reports.	See	e.g.	http://gregoryszorc.com/blog/2
014/04/01/using-mercurial-for-status-reports/

Developer	15 Tue,	Jun	3,	2014	at	12:32	AM
To:	Developer	14
Cc:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>,	firefox-dev@mozilla.org

-----	Original	Message	-----
>	On	6/2/14,	3:34	PM,	Rodrigo	Rocha	Gomes	e	Souza	wrote:
>	>	I'm	trying	to	measure	the	proportion	of	backouts	due	to	failing
>	>	automated	tests	before	and	after	the	train	model.	I	identify	such
>	>	backouts	by	looking	for	the	words	"backout"	(or	a	variation	of	it)	and
>	>	"test".	Example:
>	>
>	>						Backout	bug	504524	due	to	test	failure
>	>
>	>	Is	it	safe	to	assume	that	such	commit	messages	always	refer	to	automated
>	>	tests?	Is	there	any	case	in	which	a	backout	commit	uses	the	word	"test"
>	>	to	refer	to	manual	test?
>
>	No.	I'd	look	at	file	names.	(But	even	that	isn't	perfect.)
>
>	#	Commit	messages	with	"backout"	that	also	touched	a	file	with	"test"
>	$	hg	log	-r	'desc(backout)	&	file("**test**")'

The	existence	of	a	test	in	the	patch	doesn't	seem	strongly	related	to	the	whether	it	caused	a	failure	in	some	test
when	it	landed.	Many	times	patches	that	touch	no	tests	get	backed	out	for	test	failures.

Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Tue,	Jun	3,	2014	at	3:25	PM

EMAILS EXCHANGED WITH MOZILLA ENGINEERS 89



To:	Developer	5
Cc:	Developer	14,	Developer	15,	firefox-dev@mozilla.org

Thanks	for	your	feedback.	It	appears	there	isn't	much	to	do	in	this	case,	except	reporting	the	limitations	of	the
study.

[]s
Rodrigo

Developer	10 Tue,	Jun	3,	2014	at	4:07	PM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>
Cc:	Developer	5,	firefox-dev@mozilla.org,	Developer	14

If	you	look	at	https://tbpl.mozilla.org,	you	can	see	the	waterfall	builds	for	each	check-in.	Subsequently,	you	will	find
that	mozilla-inbound	and	fx-team	are	the	two	inbound	branches	that	feed	in	to	mozilla-central.

You	could	write	a	script	that	looks	for	pushes	that	have	a	fair	amount	of	"orange",	followed	by	all	green.	A	test	suite
will	turn	orange	when	an	automated	test	fails,	and	will	subsequently	turn	green	when	the	test	is	fixed.	You	could
then	look	for	the	word	"backout"	in	the	pushlog	for	the	push	that	turned	the	tree	back	to	green.	This	would	show
you	that	a	patch	was	backed	out	due	to	an	automated	test	breaking.

Hope	that	helps,

Developer	12 Wed,	Jun	4,	2014	at	2:25	AM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>
Cc:	firefox-dev@mozilla.org

Rodrigo	Rocha	Gomes	e	Souza	wrote:

Thanks	for	your	feedback.	It	appears	there	isn't	much	to	do	in	this	case,	except	reporting	the
limitations	of	the	study.

http://futurama.theautomatedtester.co.uk/	may	be	useful.

90 EMAILS EXCHANGED WITH MOZILLA ENGINEERS



Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>

Is	backout	rate	increasing?
23	messages

Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Sun,	Jul	27,	2014	at	12:12	PM
To:	firefox-dev@mozilla.org

As	part	of	my	PhD,	I've	been	keeping	track	of	backouts	from	Firefox	3.5	up	to	Firefox	27,	and	I	noticed	that,	since
the	adoption	of	6-week	releases,	the	backout	rate	(num.	of	backouts	/	num.	of	bugs	fixed)	has	increased	from	6.8%
to	9.4%	[1].	I	wonder...

1.	...	have	you	noticed	the	increase	in	backout	rate	or	its	effects?
2.	...	why	would	the	backout	rate	grow	under	rapid	release	cycles?

Would	you	help	me	with	these	questions?	It's	always	good	to	get	feedback	from	people	who	actually	work	on
Firefox.

Some	additional	insights:

*	I	noticed	that,	after	the	adoption	of	rapid	releases,	the	number	of	bugs	fixed	per	day	increased	74%,	but	also	that
the	number	of	developers	(computed	as	the	num.	of	people	that	committed	at	least	10	bug	fixes)	increased	75%,
so	*apparently*	developer	workload	haven't	increased	(please	correct	me	if	I'm	wrong).	Therefore,	workload
doesn't	seem	to	explain	the	growth	in	backout	rate.
*	I	also	noticed	that,	under	rapid	releases,	more	than	85%	of	backouts	ocurred	during	or	before	merging	into
central	(i.e.,	before	the	bug	status	changed	to	FIXED),	versus	55%	under	traditional	releases.	Seems	like	an
improvement,	since	more	problems	are	being	discovered	during	automated	testing	and	less	manual	tests	need	to
be	repeated	due	to	backouts.

[]s
Rodrigo

[1]:	http://rodrigorgs.github.io/images/firefox-backouts.png

Developer	16 Sun,	Jul	27,	2014	at	4:10	PM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>
Cc:	firefox-dev@mozilla.org

Hi!

Interesting	question.

If	I	had	to	guess,	I’d	say	it’s	because	our	automated	testing	has	improved	considerably	since	3.5.	A	number	of
memory	leak	finding	tools[1]	have	been	integrated	into	our	test	environments	that	are	improving	our	early	catch-
rate.	This	is	in	addition	to	our	ever-expanding	set	of	unittests	running	on	every	checkin[2].

I	think	your	second	point	("more	than	85%	of	backouts	occurred	during	or	before	merging	into	central”)	supports
the	“better	testing”	theory.	Proving	this	would	be	difficult	as	you’d	need	to	mine	all	of	the	backout-related	bugs	to
find	the	reason	for	the	backout.	Searching	for	keywords	like	“regression”,	“leak”	or	“fail”	might	be	automatable.

1-	https://developer.mozilla.org/en-US/docs/Mozilla/Debugging/Debugging_memory_leaks

2-	https://developer.mozilla.org/en-US/docs/Mochitest

Developer	16 Sun,	Jul	27,	2014	at	4:13	PM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>
Cc:	firefox-dev@mozilla.org

One	other	point	occurs	to	me:	We’ve	hardened	our	landing	processes	during	that	timeframe.	Where	bugs	might
have	had	broken	patches	land	and	gotten	fixed	in-tree,	our	current	process	and	tree	sheriffs	will	backout	obvious
failures	until	the	bugs	get	fixed	before	landing.	It’s	much	harder	to	land	something	that	is	known	to	be	“broken”	in
our	current	process	than	it	used	to	be.

cheers,

EMAILS EXCHANGED WITH MOZILLA ENGINEERS 91



Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Sun,	Jul	27,	2014	at	6:06	PM
To:	Developer	16
Cc:	firefox-dev@mozilla.org

Thanks,	Developer	16!	

If	you're	curious,	I've	computed	how	often	words	like	"regression",	"leak",	"fail",	and	"test"	appear	in	backout
messages,	both	under	traditional	and	rapid	releases:

|	keyword	\	cycle	||	traditional	|			rapid				|
|-----------------||---------- ---|------------|
|	regression						||		0.09965338	|	0.02358804	|
|	leak												||		0.02599653	|	0.02923588	|
|	fail												||			0.1507799	|		0.2272425	|
|	test												||			0.1897747	|		0.2631229	|

(numbers	are	proportional	to	number	of	backouts;	0	=	0%,	1	=	100%)

You	can't	rely	too	much	on	word	frequencies	extracted	from	commit	messages,	but	it	appears	that	regressions
have	reduced	and	backouts	due	to	test	failures	have	increased.

So,	summarizing	what	you	said:

(a)	bugs	used	to	be	fixed	in-tree	more	often
(b)	tricky	problems,	like	memory	leaks,	used	to	be	harder	to	detect

Regarding	(b),	I	assume	that	it	would	contribute	to	a	higher	backout	rate	in	the	following	cases:

(b.1)	Small	memory	leaks,	that	would	go	unnoticed	before,	are	now	found,	and	the	patch	is	backed	out	and	fixed.
(b.2)	Some	memory	leaks	would	be	found	much	after	the	patch	that	created	it	was	committed;	as	a	result,	a	new
bug	report	would	be	filled	(instead	of	reopening	the	original	bug	report	and	backing	out	the	patch)

Is	it	reasonable?	Of	course	such	hypotheses	would	be	very	difficult	to	prove...

[]s
Rodrigo
[Quoted	text	hidden]

Developer	17 Sun,	Jul	27,	2014	at	6:55	PM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>

Another	possible	reason	for	more	backouts	would	be	that	the	amount	of	code	contributed	to	our	codebase	has
substantially	increased	since	Firefox	3.5	so	code	conflicts	are	far	more	likely...	no	matter	what	we	do.

Developer	7 Sun,	Jul	27,	2014	at	6:56	PM
To:	Developer	16,	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>
Cc:	firefox-dev@mozilla.org

>	We’ve	hardened	our	landing	processes	during	that	timeframe.	Where	bugs	might	have	had	broken	patches	land
and	gotten	fixed	in-tree,	our	current	process	and	tree	sheriffs	will	backout	obvious	failures	until	the	bugs	get	fixed
before	landing.	It’s	much	harder	to	land	something	that	is	known	to	be	“broken”	in	our	current	process	than	it	used
to	be.

Additionally:

•	We	now	have	various	'inbound'	trees,	rather	than	landing	directly	on	m-c.	These	have	full-time	sheriffs,	and	you
don't	have	to	watch	your	push.	For	better	or	worse,	these	are	often	treated	as	an	automated	landing	platform;	if	it
breaks,	it'll	get	backed	out	without	the	developer	having	to	do	much.	In	the	"old	days",	you	were	expected	to	have
built,	tested,	done	a	Try	build,	etc.	before	the	patch	landed.

That	has	perhaps	led	to	more	broken	code	being	landed	and	backed	out.

I	remember	feeling	a	great	deal	more	pressure	and	worry	prior	to	landing	on	m-c	than	I	do	on	fx-team.	I	have
landed	code	where	I	didn't	do	a	full	build	after	making	changes	requested	in	a	review…	and	have	broken	the	build
as	a	result.	And	we	routinely	do	so	without	a	Try	build.	After	all,	if	we're	going	to	spend	the	money	to	do	multiple
builds	and	run	tests,	it	might	as	well	be	on	fx-team	rather	than	on	Try.

92 EMAILS EXCHANGED WITH MOZILLA ENGINEERS



•	We	have	a	lot	more	stuff	that	can	break,	on	more	platforms,	as	well	as	more	tests	—	these	days	we	don't	have
everyone	working	on	just	Firefox.	Code	landing	for	B2G	can	break	Fennec,	for	example,	and	B2G	devs	don't	build
and	test	on	Fennec	locally.	Those	kinds	of	changes	will	be	caught	and	backed	out	when	they	hit	the	trees,	not
found	beforehand.

I	don't	see	anything	in	your	analysis,	Rodrigo,	that	indicates	differentiation	based	on	tree.

I	think	a	much	more	interesting	question	is:	what	has	the	introduction	of	sheriffed	integration	branches	done	to	the
backout	rate	on	mozilla-central?	And	relatedly,	what's	the	backout	rate	on	mozilla-beta	as	a	result?

I	bet	Beta's	backout	rate	is	way	lower	than	m-c's	was.	And	I	would	expect	that	m-c's	rate	has	dropped	since	3.5,
with	mozilla-inbound	and	fx-team	increasing	(from	zero).

Developer	18 Sun,	Jul	27,	2014	at	7:10	PM
To:	firefox-dev@mozilla.org

Rodrigo	Rocha	Gomes	e	Souza	schrieb:
2.	...	why	would	the	backout	rate	grow	under	rapid	release	cycles?

Part	of	switching	to	Rapid	Release	was	to	make	sure	that	Nightly	was	always	stable	to	use	and	to	not	excuse
brokenness	there	any	more,	which	means	being	more	aggressive	when	backing	out	patches.	AFAIK,	the	backout
aggressiveness	was	even	explicitly	mentioned	when	we	switched.

Also,	as	others	have	pointed	to,	since	we	switched	to	landing	patches	almost	exclusively	on	other	integration
branches,	we	both	made	it	easier	to	land	there	and	as	people	are	not	supposed	to	watch	those	trees	for	test
failures,	we	do	not	end	up	in	them	fixing	the	issues	with	followup	after	followup	fix	but	rather	have	them	backed	out
right	away.

*	I	noticed	that,	after	the	adoption	of	rapid	releases,	the	number	of	bugs
fixed	per	day	increased	74%,	but	also	that	the	number	of	developers
(computed	as	the	num.	of	people	that	committed	at	least	10	bug	fixes)
increased	75%,	so	*apparently*	developer	workload	haven't	increased	(please
correct	me	if	I'm	wrong).	Therefore,	workload	doesn't	seem	to	explain	the
growth	in	backout	rate.

Yes,	a	developer	can	only	do	so	much	work.	Growth	is	mostly	adding	developers	nowadays,	not	the	individual
doing	more.	And	we	end	up	re-landing	fixed	versions	of	the	patches	that	were	backed	out,	we're	just	not	doing
followup	fixes	after	the	initial	commit	as	much.

At	least	that's	my	impression	as	someone	watching	but	not	actively	developing	himself.

Developer	19 Sun,	Jul	27,	2014	at	7:40	PM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>
Cc:	Firefox	Dev	<firefox-dev@mozilla.org>

This	analysis	doesn't	seem	to	take	into	account	the	differences	in
overall	development	volume	over	time.	We	have	more	developers,	more
projects,	more	patches	going	in	than	we	did	in	the	Firefox	3.5	days.
Not	having	researched	it,	I	suspect	the	differences	in	backout	rates
are	more	likely	tied	to	a)	that	overall	increase	in	development
volume/breadth	and	b)	different	tree	management	practices	and
different	tools	(increasing	use	of	"integration	branches"	like
mozilla-inbound	&	different	pre-landing	Try	practices).

Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Sun,	Jul	27,	2014	at	8:12	PM
To:	Developer	7,	Developer	18,	Developer	19,	Developer	17
Cc:	firefox-dev@mozilla.org

Thank	you	all	for	your	feedback,	it	all	makes	sense.	Summarizing:

-	with	the	increase	of	the	code	base	and	number	of	projects,	conflicts	and	integration	problems	are	more	likely
-	increased	backout	rate	is	not	necessarily	bad,	it	just	means	that	developers	are	relying	more	on	the	process	and
infrastructure	(tree	sheriffs	and	inbound/fx-team	trees)

I	don't	see	anything	in	your	analysis,	Rodrigo,	that	indicates	differentiation	based	on	tree.

EMAILS EXCHANGED WITH MOZILLA ENGINEERS 93



While	I	have	been	analyzing	only	the	m-c	commit	log,	I've	measured	backout	rate	in	distinct	situations:

1.	backouts	ocurring	before	bug	report	status	changes	to	RESOLVED-FIXED	--	equivalent	to	backouts	in	inbound
2.	backouts	ocurring	after	RESOLVED-FIXED	--	equivalent	to	backouts	in	m-c	and	later	trees
3.	backouts	ocurring	after	VERIFIED	--	equivalent	to	backouts	in	aurora/beta?

In	fact,	backouts	after	RESOLVED-FIXED	decreased	from	3.2%	to	1.4%.	Backouts	after	VERIFIED	are	rare	in	any
case,	so	the	difference	is	not	significant.

I	bet	Beta's	backout	rate	is	way	lower	than	m-c's	was.	And	I	would	expect	that	m-c's	rate	has	dropped	since	3.5,
with	mozilla-inbound	and	fx-team	increasing	(from	zero).

How	do	I	know,	looking	at	commit	logs	only,	if	a	backout	ocurred	in	inbound,	m-c,	aurora,	or	beta?	I	mean,	if
someone	commits	a	patch	to	inbound,	then	commits	a	backout,	and	then	commits	an	improved	version,	the	three
commits	are	merged	into	m-c,	right?	Do	I	have	to	look	for	commits	that	are	in	m-c	and	aren't	in	inbound?	If	this	is
the	case,	is	there	a	convenient	Mercurial	command	to	do	it?

[]s
Rodrigo

Developer	20 Sun,	Jul	27,	2014	at	9:59	PM
To:	Developer	19,	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>
Cc:	Firefox	Dev	<firefox-dev@mozilla.org>

As an observer of the dev process, that would jibe with what I’m seeing. The rules have been tightened
enormously, the process moves much faster with less tolerance of errors, so increased backouts is a natural
occurrence. Indeed, I see it as a very good thing that the backout rate has gone up. It means the system is
working just the way it’s meant to — if something isn’t ready for prime time, it gets backed out and tried again on
the next train.

On	July	27,	2014	at	6:40:21	PM,	Developer	19	wrote:

This analysis doesn't seem to take into account the differences in 
overall development volume over time. We have more developers, more 
projects, more patches going in than we did in the Firefox 3.5 days. 
Not having researched it, I suspect the differences in backout rates 
are more likely tied to a) that overall increase in development 
volume/breadth and b) different tree management practices and 
different tools (increasing use of "integration branches" like 
mozilla-inbound & different pre-landing Try practices). 

Developer	7 Mon,	Jul	28,	2014	at	1:13	AM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>
Cc:	Developer	18,	Developer	19,	Developer	17,	"firefox-dev@mozilla.org	Dev"	<firefox-dev@mozilla.org>,	Developer
14

>	How	do	I	know,	looking	at	commit	logs	only,	if	a	backout	ocurred	in	inbound,	m-c,	aurora,	or	beta?	I	mean,	if
someone	commits	a	patch	to	inbound,	then	commits	a	backout,	and	then	commits	an	improved	version,	the	three
commits	are	merged	into	m-c,	right?	Do	I	have	to	look	for	commits	that	are	in	m-c	and	aren't	in	inbound?	If	this	is
the	case,	is	there	a	convenient	Mercurial	command	to	do	it?

Commits	are	merged	between	inbound/fx-team/m-c;	at	some	instances	in	time	these	three	trees	contain	the	same
commits,	with	the	same	hashes	but	different	commit	IDs.	Via	plain	ol'	`hg	log`	these	are	indistinguishable.

E.g.,	in	fx-team:

changeset:			196163:1d6cb0c4b970
user:								Carsten	"Tomcat"	Book	<cbook@mozilla.com>
date:								Fri	Jul	25	15:59:52	2014	+0200
summary:					Backed	out	changeset	3e869dd7e82a	(bug	1016629)

in	m-c:

changeset:			196151:1d6cb0c4b970
user:								Carsten	"Tomcat"	Book	<cbook@mozilla.com>
date:								Fri	Jul	25	15:59:52	2014	+0200

94 EMAILS EXCHANGED WITH MOZILLA ENGINEERS



summary:					Backed	out	changeset	3e869dd7e82a	(bug	1016629)

Fortunately,	the	amazing	Mr	Szorc	has	tools	that	can	help	answer	your	questions:

		http://moztree.gregoryszorc.com/api/changeset/1d6cb0c4b970

If	you're	trying	to	figure	stuff	out	using	Mercurial,	you	should	talk	to	him.

Developer	14 Mon,	Jul	28,	2014	at	1:12	PM
To:	Developer	7,	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>
Cc:	Developer	18,	Developer	19,	Developer	17,	"firefox-dev@mozilla.org	Dev"	<firefox-dev@mozilla.org>

[Quoted	text	hidden]
I	would	use	my	mozext	extension	as	described	at	[1]	for	doing	this	kind
of	analysis.	e.g.

$	hg	pull	http://hg.stage.mozaws.net/gecko
$	hg	pushlogsync
$	hg	log	--template	'{rev}:{node|short}	{firstpushtree}\n'

That	will	identify	where	each	changeset	landed	first.

You	should	read	the	`hg	help	revset`	and	`hg	help	templates`	output	to
learn	how	Mercurial	can	be	used	to	construct	powerful	queries	and	answer
the	questions	you	seek.

[1]
http://gregoryszorc.com/blog/2013/11/08/using-mercurial-to-query-mozilla-metadata/

Developer	6 Mon,	Jul	28,	2014	at	2:04	PM
To:	firefox-dev@mozilla.org

On	7/27/14	3:40	PM,	Developer	19	wrote:
This	analysis	doesn't	seem	to	take	into	account	the	differences	in
overall	development	volume	over	time.	We	have	more	developers,	more
projects,	more	patches	going	in	than	we	did	in	the	Firefox	3.5	days.

It's	a	percentage	of	landings,	so	it	should	be	volume	independent.

I	think	Developer	7	is	on	the	right	track,	w.r.t.	the	changing	standards	of	how	careful	people	need	to	be	when
landing.

Another	possible	factor	to	consider:	In	the	old	cycle,	the	type	of	code	being	landed	changed	over	the	course	of	the
cycle.	As	a	release	neared,	there	were	extended	periods	of	time	when	landings	were	restricted	to	fixes	for
critical/blocker	issues	only.	I'd	guess	there	was	a	lower	backout	rate	then...	OTOH,	there	was	more	attention
focused	on	the	tree	at	those	times,	so	could	actually	be	higher.

It	would	be	interesting	to	see	a	graph	of	backout	rate	over	time.

Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Mon,	Jul	28,	2014	at	4:48	PM
To:	Developer	142,	Developer	6
Cc:	Developer	7,	Developer	18,	Developer	19,	Developer	17,		"firefox-dev@mozilla.org	Dev"	<firefox-
dev@mozilla.org>

On	Mon,	Jul	28,	2014	at	1:12	PM,	Developer	14	wrote:	
I	would	use	my	mozext	extension	as	described	at	[1]	for	doing	this	kind
of	analysis.	e.g.
	
$	hg	pull	http://hg.stage.mozaws.net/gecko
$	hg	pushlogsync
$	hg	log	--template	'{rev}:{node|short}	{firstpushtree}\n'

Thank	you,	it	worked	perfectly.

EMAILS EXCHANGED WITH MOZILLA ENGINEERS 95



On	Mon,	Jul	28,	2014	at	2:04	PM,	Developer	6	wrote:
Another	possible	factor	to	consider:	In	the	old	cycle,	the	type	of	code	being	landed	changed	over	the	course	of
the	cycle.	As	a	release	neared,	there	were	extended	periods	of	time	when	landings	were	restricted	to	fixes	for
critical/blocker	issues	only.	I'd	guess	there	was	a	lower	backout	rate	then...	OTOH,	there	was	more	attention
focused	on	the	tree	at	those	times,	so	could	actually	be	higher.
	
It	would	be	interesting	to	see	a	graph	of	backout	rate	over	time.

There's	a	graph	at	http://rodrigorgs.github.io/images/firefox-backouts.png	
The	graph	doesn't	show	the	x-axis	labels,	so	it's	not	easy	to	draw	conclusions.	However,	we	can	see	that	the
backout	rate	was	the	highest	just	before	the	4.0	release	(vertical	dashed	line).

[]s
Rodrigo

Developer	19 Mon,	Jul	28,	2014	at	8:51	PM
To:	Developer	6
Cc:	Firefox	Dev	<firefox-dev@mozilla.org>

On	Mon,	Jul	28,	2014	at	10:04	AM,	Developer	6	wrote:
>	On	7/27/14	3:40	PM,	Developer	19	wrote:
>>
>>	This	analysis	doesn't	seem	to	take	into	account	the	differences	in
>>	overall	development	volume	over	time.	We	have	more	developers,	more
>>	projects,	more	patches	going	in	than	we	did	in	the	Firefox	3.5	days.
>
>
>	It's	a	percentage	of	landings,	so	it	should	be	volume	independent.

That	was	kind	of	my	point	-	I	would	not	assume	that	the	backout	rate
should	be	volume-independent.	As	a	project	grows	I	would	expect	the
backout	rate	to	also	grow,	all	else	being	equal.	The	implied
conclusion	(rapid	release	caused	a	higher	backout	rate)	seemed	to
depend	on	assuming	otherwise.

Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Tue,	Jul	29,	2014	at	7:50	AM
To:	Developer	19
Cc:	Developer	6,	Firefox	Dev	<firefox-dev@mozilla.org>

On	Mon,	Jul	28,	2014	at	8:51	PM,	Developer	19	wrote:
That	was	kind	of	my	point	-	I	would	not	assume	that	the	backout	rate
should	be	volume-independent.	As	a	project	grows	I	would	expect	the
backout	rate	to	also	grow,	all	else	being	equal.	The	implied
conclusion	(rapid	release	caused	a	higher	backout	rate)	seemed	to
depend	on	assuming	otherwise.

Sure,	it's	a	valid	point.	It's	reasonable	to	assume	that	backout	rate	is	somehow	proportional	to	million	lines	of	code
(MLOC),	but	I	think	they're	not	linearly	proportional.	Let's	assume	that	backout	rate	should	be	proportional	to	the
square	root	of	MLOC.	In	this	case:

Before:	6.8%	/	sqrt(4.9)	MLOC	=	3.07
After:	9.4%	/	sqrt(8.1)	MLOC	=	3.30		(i.e.,	a	7%	increase)

Some	researchers	propose	using	a	metric	like	num.	of	backed	out	bugs	/	million	lines	of	code	(MLOC):

Before:	836	backouts	/	4.9	MLOC	=	170.6
After:	2305	backouts	/	8.1	MLOC	=	284.6	(i.e.,	a	66%	increase)

I	assumed	volume	could	be	one	explanation	to	the	increased	backout	rate,	but	given	the	high	growth	(from	6.8%
to	9.4%),	I	thought	it	was	worthwhile	to	look	for	additional	explanations.

[]s
Rodrigo

Developer	21 Tue,	Jul	29,	2014	at	5:24	PM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs-Re5JQEeQqe8AvxtiuMwx3w@public.gmane.org>,	firefox-

96 EMAILS EXCHANGED WITH MOZILLA ENGINEERS



dev@mozilla.org

On	7/29/14,	6:50	AM,	Rodrigo	Rocha	Gomes	e	Souza	wrote:
It's	reasonable	to	assume	that	backout	rate	is
somehow	proportional	to	million	lines	of	code	(MLOC)

Backout	rate	depends	not	just	on	size	of	codebase	but	also	on	number	of	checkins.

Consider	the	lifetime	of	a	typical	checkin:

1)		Pull	code.
2)		Make	changes.
3)		Test	changes.
4)		Rebase.
5)		Push	code.

You	get	a	backout	if	sometime	between	step	1	and	step	4	someone	checked	in	something	that	makes	the	testing
from	step	3	invalid.

Backout	rate	also	depends	on	number	of	supported	configurations,	because	it	complicates	local	testing.		Note	that
we	added	a	number	of	these	since	we	started	rapid	release.

Let's	assume	that	backout	rate	should
be	proportional	to	the	square	root	of	MLOC.

Why	not	the	square?		Or	the	log?		I	mean,	there's	no	reason	to	assume	it's	linear,	but	why	square	root?

Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Tue,	Jul	29,	2014	at	7:07	PM
To:	Developer	21
Cc:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs-Re5JQEeQqe8AvxtiuMwx3w@public.gmane.org>,	"firefox-
dev@mozilla.org	Dev"	<firefox-dev@mozilla.org>

On	Tue,	Jul	29,	2014	at	5:24	PM,	Developer	21	wrote:
On	7/29/14,	6:50	AM,	Rodrigo	Rocha	Gomes	e	Souza	wrote:
It's	reasonable	to	assume	that	backout	rate	is
somehow	proportional	to	million	lines	of	code	(MLOC)

Backout	rate	depends	not	just	on	size	of	codebase	but	also	on	number	of	checkins.

That's	a	good	point.	If	we	define	backout	rate	as	backouts	/	checkins,	then	what	you're	saying	is	that,	everything
else	equal,	backouts	should	not	be	proportional	to	checkins,	but	to	a	function	of	the	number	of	checkins	(e.g.,
checkins^2),	right?
	

Let's	assume	that	backout	rate	should
be	proportional	to	the	square	root	of	MLOC.

Why	not	the	square?		Or	the	log?		I	mean,	there's	no	reason	to	assume	it's	linear,	but	why	square	root?

I	actually	just	picked	the	first	sublinear	function	I	could	think	about.	I	couldn't	find	any	empirically	tested	formula
linking	backout	rate	to	MLOC,	and	it's	not	my	goal	right	now	to	find	this	link	(maybe	in	the	future).

[]s
Rodrigo

Developer	22 Sun,	Aug	3,	2014	at	5:42	PM
To:	firefox-dev@mozilla.org

From	my	brief	analysis	of	the	numbers	I	have	seen	higher	backout	rates	than	you	are	reporting	but	they	have	been
dropping	over	time.

For	the	last	7	days	I	have	around	8%	of	pushes	have	a	backout	in	them	on	Mozilla	Inbound.	(26	backouts	and	321
pushes	you	can	see	the	data	at	http://futurama.theautomatedtester.co.uk/	)

The	problem	I	found	was	that	I	could	not	rely	on	looking	at	hg	log	at	all.	This	down	to	the	interesting
way	that	we	handle	integration	trees	and	then	do	merges.	Others	have	briefly	mentioned	this	potential
problems	so	I	have	been	using	the	Pushes	API	from	the	Release	Engineering	team	but	that	can	only	handle
a	certain	timeline	(I	am	waiting	on	treeherder	API	to	be	ready	to	get	long	term	data	since	I	would	love	6	months
worth	of	data).

EMAILS EXCHANGED WITH MOZILLA ENGINEERS 97



I	would	love	to	see	the	code/papers	that	you	are	using	to	do	this	work	since	I	have	a	special	interest	in	this	area
since	I	manage	the	sheriffs.

Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Mon,	Aug	11,	2014	at	9:10	AM
To:	Developer	22
Cc:	"firefox-dev@mozilla.org	Dev"	<firefox-dev@mozilla.org>

On	Sun,	Aug	3,	2014	at	5:42	PM,	Developer	22	wrote:
From	my	brief	analysis	of	the	numbers	I	have	seen	higher	backout	rates	than	you	are	reporting	but	they	have
been	dropping	over	time.

Sorry	for	the	delay.	Well,	there	are	many	ways	to	filter	the	data	to	compute	backout	rates,	so	the	percentages	may
be	different.	I'll	send	you	the	details	on	how	I	compute	statistics.
	
For	the	last	7	days	I	have	around	8%	of	pushes	have	a	backout	in	them	on	Mozilla	Inbound.	(26	backouts	and
321	pushes	you	can	see	the	data	at	http://futurama.theautomatedtester.co.uk/	)

That's	interesting.	Is	the	source	code	available?

[]s
Rodrigo

Developer	22 Mon,	Aug	11,	2014	at	9:20	AM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>
Cc:	"firefox-dev@mozilla.org	Dev"	<firefox-dev@mozilla.org>

The	way	that	I	calculate	the	backouts,	and	this	might	be	the	discrepancy,	a	push	is	counted	a	backout	if	there	is	a
commit	in	there	that	has	a	backout.	I	don't	go	and	check	all	the	commits,	I	normally	jump	out	of	the	loop	when	I
find	the	first	one.

Code	can	be	found	at	https://github.com/AutomatedTester/futurama-data/blob/master/app/tree_controller.py#L46

Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com> Sun,	Jan	18,	2015	at	7:18	AM
To:	"firefox-dev@mozilla.org	Dev"	<firefox-dev@mozilla.org>

I'd	like	to	thank	all	of	you	that	helped	me	with	my	research	on	backouts	in	Firefox.	You	guys	were	really	amazing.
The	feedback	you	gave	me	in	this	list	was	incredibly	rich	and	essential	for	me	to	interpret	the	raw	data	from
Bugzilla	and	Mercurial.

The	result	is	a	paper	entitled	"Rapid	Releases	and	Patch	Backouts:	A	Software	Analytics	Approach",	that	will	be
published	on	IEEE	Software's	special	issue	on	release	engineering.	A	draft	of	the	paper	is	available	at	[2].	The	final
version	will	be	published	in	March.

[1]:	http://releng.polymtl.ca/RELENG2015/html/SI.html	(pre-print)
[2]:	http://rodrigorgs.github.io/publications/souza2015.pdf

[]s
Rodrigo

Developer	23 Tue,	Jan	20,	2015	at	3:44	AM
To:	Rodrigo	Rocha	Gomes	e	Souza	<rodrigorgs@gmail.com>

Thanks	for	sharing	your	research	results,	Rodrigo.	It	is	very	interesting!

98 EMAILS EXCHANGED WITH MOZILLA ENGINEERS



APPENDIX B

RELATED PAPERS BY THE AUTHOR

This appendix contains the first page of our previous publications directly related to
this thesis (SOUZA; CHAVEZ, 2011; SOUZA; CHAVEZ; BITTENCOURT, 2014, 2015c,
2015a, 2015b).

99



Programa Multiinstitucional de Pós-graduação em Ciência da Computação PMCC-RT-01/2011

Impact of the Four Eyes Principle on Bug Reopening:
the Case of Eclipse ∗

Rodrigo Rocha Christina Chavez

rodrigo@dcc.ufba.br , flach@dcc.ufba.br

Resumo. O princı́pio dos quatro olhos diz que, depois que um desenvolvedor solu-
ciona um bug, um outro desenvolvedor deve verificar a solução. A justificativca é que
quem soluciona um bug está muito próximo do código e pode se esquecer de cobrir
casos excepcionais, fazendo com que o bug se manifeste mais tarde no ciclo de desenvol-
vimento, levando a baixa qualidade do software e retrabalho. Neste relatório, examina-
mos o sistema de rastreamento de bugs do Eclipse, um grande projeto de código aberto
que recomenda o princı́pio dos quatro olhos, pra verificar se bugs resolvidos de acordo
com o princı́pio têm maior probabilidade de terem sido definitivamente solucionados.
Os resultados indicam que tal relação ocorre em alguns subprojetos do Eclipse, mas não
em outros. Uma investigação mais aprofundada é necessária para que se descubram as
razões por trás de tal assimetria.

Palavras-chave: práticas de desenvolvimento de software, relatórios de bugs, sistemas
de código aberto, mineração de repositórios de software.

Abstract. The four eyes principle says that, after a developer fixes a bug, another
developer should verify the fix. The rationale is that whoever fixes a bug is too close to
the code and may forget to cover some corner cases, causing the bug to manifest itself
later in the software lifecycle, which leads to poor software quality and rework. In this
report, we examine the bug tracking system of Eclipse, a large open source project that
recommends the four eyes principle, to see whether bugs that were handled accordingly
to the four eyes principle are more likely to be definitely fixed. The results indicate that
this relation occurs in some sub-projects but not in others. Further investigation is needed
in order to discover the reasons behind such asymmetry.

Keywords: software development practices, bug reports, open source, software reposi-
tory mining.

∗ Trabalho apoiado pela Fapesb. This work has been sponsored by Fapesb.

100 RELATED PAPERS BY THE AUTHOR



Do Rapid Releases Affect Bug Reopening?
A Case Study of Firefox

Rodrigo Souza
Office of Information Technology

Federal University of Bahia, Brazil
Email: rodrigo@dcc.ufba.br

Christina Chavez
Computer Science Department

Federal University of Bahia, Brazil
Email: flach@dcc.ufba.br

Roberto A. Bittencourt
State University of Feira de Santana, Brazil

Email: roberto@uefs.br

Abstract—Large software organizations have been adopting
rapid release cycles to deliver features and bug fixes earlier to
their users. Because this approach reduces time for testing, it
raises concerns about the effectiveness of quality assurance in this
setting. In this paper, we study how the adoption of rapid release
cycles impacts bug reopening rate, an indicator for the quality of
the bug fixing process. To this end, we analyze thousands of bug
reports from Mozilla Firefox, both before and after their adoption
of rapid releases. Results suggest that the bug reopening rate of
versions developed in rapid cycles was about 7% higher. Also,
as a warning to the software analytics community, we report
contradictory results from three attempts to answer our research
question, performed with varying degrees of knowledge about the
Firefox release process.

I. INTRODUCTION

The internet has made easier to distribute software, effec-
tively increasing the competition between software organiza-
tions. The so-called “internet time” [1] pushed organizations
to release new features at a faster pace. As a result, in the last
decade, projects such as Firefox and Unity3D started moving
from a 12–18 month release cycle to a shorter, 1–3 month
release cycle.

Although the main motivation for moving to rapid (or
short) release cycles is time-to-market, some people argue
that it also helps improve software quality. As developers
are expected to always implement potentially shipable source
code, testing efforts can be more frequent, so hopefully less
bugs reach end users. On the other hand, short cycles may lead
to tighter deadlines for testing, which may ultimately lead to
less stable versions being released to the public.

Whether rapid releases actually reduce bugs is subject to
discussion. Khohm et al. [2], for instance, found no significant
difference in the number of bugs created each day when
comparing traditional and short releases at Mozilla (although
the median number of bugs increased a little under short
releases).

In this paper we explore a related, but different question:
how do rapid release cycles affect bug reopening? Bug re-
opening is what happens when, after a bug report is resolved,
someone discovers that the resolution was inappropriate or
incomplete.

Bug reopening is undesirable because it leads to rework.
While it cannot be completely avoided, a high bug reopening
rate may indicate an unstable development process [3].

Despite its importance, there is still little empirical evi-
dence on how bug reopening is influenced by the software de-
velopment process. In this paper, we investigate three research
questions on the relationship between rapid releases and bug
reopening:

RQ1: Do rapid releases impact the bug reopening rate?
We expect that, with short release cycles, bug reopening would
be more frequent. The rationale is that, in that case, bugs would
be fixed faster, and might not cover corner cases. Also, there
would be less time for testing.

RQ2: Do rapid releases impact the number of bugs
reopened due to failing automated tests? If a bug is reopened
due to a failing automated test, it means that the initial
manual testing and core review were not successful. We expect
that, because rapid releases leave less time for comprehensive
manual testing, bug fixes would fail automated tests more
often.

RQ3: Do rapid releases impact the time it takes for
a bug to be reopened? The time between a bug fix and
its reopening, also known as latent time [4], measures how
fast faulty fixes are detected. Smaller latent times mean that
end users are less likely to get software with bugs that were
believed to be fixed. We expect that, when software is released
more often, faulty bug fixes would be discovered faster by
plugin developers and early users, leading to a shorter latent
time.

To conduct this study, we performed statistical analyses on
bug reports and commit logs from Mozilla Firefox, an open
source web browser used by half a billion people worldwide1.
Mozilla recently moved from a traditional, planned release
cycle, to a rapid, 6-week release cycle.

The results suggest that (1) the bug reopening rate in-
creased 7% under rapid releases; (2) the number of bugs
reopened due to failing automated tests did not change sig-
nificantly; and (3) long-lived faulty bug fixes tended to be
discovered earlier under rapid releases. Although it is not
possible to generalize from a single case, such results can
provide insight for further studies.

The word “bug” is used in a broad sense, meaning any
problem that was documented in a bug report. A significant
proportion of bug reports do not refer to corrective mainte-
nance tasks [5]; they may refer instead to performance im-

1https://blog.mozilla.org/press/ataglance/

2014 Brazilian Symposium on Software Engineering

978-1-4799-4223-7/14 $31.00 © 2014 IEEE

DOI 10.1109/SBES.2014.10

31

RELATED PAPERS BY THE AUTHOR 101



FOCUS: RELEASE ENGINEERING

0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0  ©  2 0 1 5  I E E E 	 MARCH/APRIL 2015   |  IEEE SOFTWARE � 89

FOCUS: RELEASE ENGINEERING

Rapid Releases 
and Patch 
Backouts 
A Software  
Analytics Approach

Rodrigo Souza and Christina Chavez, Federal University of Bahia

Roberto A. Bittencourt, State University of Feira de Santana

// To investigate the results of Mozilla’s adoption of rapid 

releases, researchers analyzed Firefox commits and bug 

reports and talked to Firefox’s developers. The results 

show that developers are backing out broken patches 

earlier, rendering the release process more stable. //

RELEASE ENGINEERING deals 
with decisions that impact the daily 
lives of developers, testers, and us-
ers and thus contribute to a prod-
uct’s success. Although gut feeling 
is important in such decisions, it’s 
increasingly important to leverage 
existing data, such as bug reports, 
source code changes, code reviews, 
and test results, both to support 
decisions and to help evaluate cur-
rent practices. The exploration of 

software engineering data to obtain 
insightful information is called soft-
ware analytics.1

In 2011, the Mozilla Founda-
tion fundamentally changed its re-
lease process, moving from tradi-
tional 12- to 18-month releases to 
rapid, six-week releases. The moti-
vation was the need to deliver new 
features earlier to users, keeping 
pace with the evolution of Web stan-
dards, the competition among Web 

browsers, and the emergence of mo-
bile platforms.

Researchers have used software 
analytics to study the impact of 
Mozilla’s adoption of rapid releases 
(see the sidebar). Those studies fo-
cused on changes from the view-
point of users, plug-in developers, 
and quality engineers. Here, we fo-
cus on how rapid releases affect code 
integration, which is essential for the 
timely release of new versions.

In particular, we analyze how the 
backout rate evolved during Mozilla’s 
process change. A backout reverts a 
patch that was committed to a source 
code repository, either because it 
broke the build or, generally, because 
some problem was found in the patch. 
Backout implies rework because it re-
quires writing, reviewing, and testing 
a new patch. A high backout rate in-
dicates an unstable process.

Code Integration  
at Mozilla
Over the last five years, development 
at Mozilla in general, and Firefox 
in particular, has intensely applied 
code review and automated testing 
at multiple levels, such as unit test-
ing and user interface testing. This 
process has been supported by tools 
such as Bugzilla, a bug-tracking sys-
tem, and Mercurial, a distributed 
version control system. Here we de-
scribe the process before 2011 and 
the changes that occurred after. Be-
cause we analyze only the period 
between 2009 and 2013, we ignore 
specifics of the process before 2009 
and after 2013.

Before 2011: Traditional Releases
Before March 2011, Firefox develop-
ment followed a traditional release 
schedule. Features for the upcoming 
version were developed along with 
bug fixes and minor updates for the 

s2sou.indd   89 2/4/15   6:32 PM

102 RELATED PAPERS BY THE AUTHOR



On Integration Repositories,
Build Sheriffs, and Patch Backouts

Rodrigo Souza
Federal University of Bahia

Christina Chavez
Federal University of Bahia

Roberto A. Bittencourt
State University of Feira de Santana

ABSTRACT
If a developer commits a patch that breaks the build (i.e., that does not compile or causes tests to
fail), the given patch should be backed out in order to keep the repository stable while the developer
writes a fix.

In 2011 Firefox adopted rapid release cycles and changed its code integration model. Previously,
developers committed code to the central repository off which patches branched; in 2011, they
started committing to a separate integration repository. Now, only patches that successfully build
are merged by dedicated build sheriffs into the central repository. This liberates developers from
needing to perform comprehensive testing prior to committing patches [3].

Khomh et al. [1] studied Firefox’s process changes and concluded that bug fix patches were
released quicker after 2011. Mäntylä et al. [2] showed that Firefox’s rapid releases left less time for
manual testing, which became focused on specific areas.

This study also observed Firefox’s changes. Analyzing commits for 41,305 issues from 2009 to
2013, we determined that the proportion of issues with commits backed out because of broken
builds increased from 3.5% (2009–2011) to 8.3% (2011–2013). This is a result of less comprehensive
developer testing and sheriffs backing out broken patches.

This increase in backouts, however, is a non-issue. Under the new process, those backouts are
performed in the integration repository prior to merging. The central repository became even more
stable: in the same period, the proportion of issues with commits backed out later, during manual
testing, dropped from 3.1% to 1.5%.

BODY
Integration repositories and build sheriffs allow developers to test less compre-
hensively while keeping the main repository stable.

REFERENCES
[1] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams. Do faster releases improve software quality?

An empirical case study of Mozilla Firefox. In Mining Software Repositories (MSR), 2012 9th
IEEE Working Conference on, pages 179–188, June 2012.

[2] M. Mantyla, F. Khomh, B. Adams, E. Engstrom, and K. Petersen. On rapid releases and
software testing. In Software Maintenance (ICSM), 2013 29th IEEE International Conference
on, pages 20–29, Sept 2013.

[3] R. Souza, C. Chavez, and R. Bittencourt. Rapid releases and patch backouts: A software
analytics approach. Software, IEEE, 32(2):89–96, Mar 2015.

Volume 3 of Tiny Transactions on Computer Science
This content is released under the Creative Commons Attribution-NonCommercial ShareAlike License. Permission to
make digital or hard copies of all or part of this work is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
CC BY-NC-SA 3.0: http://creativecommons.org/licenses/by-nc-sa/3.0/.

RELATED PAPERS BY THE AUTHOR 103



Souza et al. Journal of Software Engineering
Research and Development  (2015) 3:9 
DOI 10.1186/s40411-015-0024-z

RESEARCH Open Access

Patch rejection in Firefox: negative reviews,
backouts, and issue reopening
Rodrigo RG Souza1*, Christina FG Chavez1 and Roberto A Bittencourt2

*Correspondence:
rodrigo@dcc.ufba.br
1Department of Computer Science,
Federal University of Bahia,
Salvador, Brazil
Full list of author information is
available at the end of the article

Abstract
Background: Writing patches to fix bugs or implement new features is an important
software development task, as it contributes to raise the quality of a software system.
Not all patches are accepted in the first attempt, though. Patches can be rejected
because of problems found during code review, automated testing, or manual testing.
A high rejection rate, specially later in the lifecycle, may indicate problems with the
software development process.
Our objective is to better understand the relationship among different forms of patch
rejection and to characterize their frequency within a project. This paper describes one
step towards this objective, by presenting an analysis of a large open source project,
Firefox.

Method: In order to characterize patch rejection, we relied on issues and source code
commits from over four years of the project’s history. We computed monthly metrics
on the occurrence of three indicators of patch rejection—negative code reviews,
commit backouts, and bug reopening—and measured the time it takes both to submit
a patch and to reject inappropriate patches.

Results: In Firefox, 20 % of the issues contain rejected patches. Negative reviews,
backouts, and issue reopening are relatively independent events; in particular, about
70 % of issue reopenings are premature; 75 % of all inappropriate changes are rejected
within four days.

Conclusions: Patch rejection is a frequent event, occurring multiple times a day. Given
the relative independence of rejection types, existing studies that focus on one single
rejection type fail to detect many rejections. Although inappropriate changes cause
rework, they have little effect on the quality of released versions of Firefox.

Keywords: Release engineering; Mining software repositories; Empirical software
engineering; Patch rejection

Introduction
According to Lehman et al. (1997), many software systems need to be constantly changed
to remain useful, and the quality of such systems will be perceived as declining unless
they are rigorously maintained. Therefore, for a high quality product, that satisfies users’
needs, it is important to keep track of issues with the product, the patches that resolve
those issues, and all verification steps during the lifecycle of a software release.
A patch goes through multiple stages before it is integrated into a release, depending

on the specific development process employed in a team. In Mozilla Firefox, for example,

© 2015 Souza et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited.

104 RELATED PAPERS BY THE AUTHOR



BIBLIOGRAPHY

ALMOSSAWI, A. Investigating the architectural drivers of defects in open-source software
systems: an empirical study of defects and reopened defects in GNOME. Dissertação
(Mestrado) — Massachusetts Institute of Technology, 2012.

AN, L.; KHOMH, F.; ADAMS, B. Supplementary bug fixes vs. re-opened bugs. In: 14th
IEEE International Working Conference on Source Code Analysis and Manipulation,
SCAM 2014, Victoria, BC, Canada, September 28-29, 2014. [S.l.: s.n.], 2014. p. 205–
214.

ANBALAGAN, P.; VOUK, M. On predicting the time taken to correct bug reports in
open source projects. In: Software Maintenance, 2009. ICSM 2009. IEEE International
Conference on. [S.l.: s.n.], 2009. p. 523 –526. ISSN 1063-6773.

ANH, N. D.; CRUZES, D.; AYALA, C. P.; CONRADI, R. Impact of stakeholder type
and collaboration on issue resolution time in oss projects. In: HISSAM, S. A.; RUSSO,
B.; NETO, M. G. de M.; KON, F. (Ed.). OSS. [S.l.]: Springer, 2011. (IFIP Advances in
Information and Communication Technology, v. 365), p. 1–16. ISBN 978-3-642-24417-9.

ANH, N. D.; CRUZES, D. S.; CONRADI, R.; AYALA, C. Empirical validation of human
factors in predicting issue lead time in open source projects. In: Proceedings of the 7th
International Conference on Predictive Models in Software Engineering. New York, NY,
USA: ACM, 2011. (Promise ’11), p. 13:1–13:10. ISBN 978-1-4503-0709-3.

ANTONIOL, G.; AYARI, K.; PENTA, M. D.; KHOMH, F.; GUÉHÉNEUC, Y.-G. Is
it a bug or an enhancement?: a text-based approach to classify change requests. In:
Proceedings of the 2008 conference of the center for advanced studies on collaborative
research: meeting of minds. New York, NY, USA: ACM, 2008. (CASCON ’08), p. 23:304–
23:318.

ARANDA, J.; VENOLIA, G. The secret life of bugs: Going past the errors and omissions
in software repositories. In: Proceedings of the 31st International Conference on Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2009. (ICSE ’09), p. 298–
308. ISBN 978-1-4244-3453-4.

AYARI, K.; MESHKINFAM, P.; ANTONIOL, G.; PENTA, M. D. Threats on building
models from cvs and bugzilla repositories: the mozilla case study. In: Proceedings of the
2007 conference of the center for advanced studies on Collaborative research. New York,
NY, USA: ACM, 2007. (CASCON ’07), p. 215–228.

105



106 BIBLIOGRAPHY

BACCHELLI, A.; BIRD, C. Expectations, outcomes, and challenges of modern code
review. In: IEEE PRESS. Proceedings of the 2013 international conference on software
engineering. [S.l.], 2013. p. 712–721.

BAKER, M. Celebrating 10 years of Mozilla. 2008. Available at 〈http://www-archive.
mozilla.org/mozilla-ten-year.html〉.

BASILI, V. R.; BRIAND, L. C.; MELO, W. L. A validation of object-oriented design
metrics as quality indicators. IEEE Trans. Softw. Eng., IEEE Press, Piscataway, NJ,
USA, v. 22, n. 10, p. 751–761, out. 1996. ISSN 0098-5589.

BASKERVILLE, R.; PRIES-HEJE, J. Short cycle time systems development. Inf. Syst.
J., v. 14, n. 3, p. 237–264, 2004.

BHATTACHARYA, P.; NEAMTIU, I. Bug-fix time prediction models: Can we do better?
In: Proceedings of the 8th Working Conference on Mining Software Repositories. New
York, NY, USA: ACM, 2011. (MSR ’11), p. 207–210. ISBN 978-1-4503-0574-7.

BIRD, C.; BACHMANN, A.; AUNE, E.; DUFFY, J.; BERNSTEIN, A.; FILKOV, V.;
DEVANBU, P. Fair and balanced?: bias in bug-fix datasets. In: Proceedings of the the 7th
joint meeting of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. New York, NY, USA: ACM,
2009. (ESEC/FSE ’09), p. 121–130. ISBN 978-1-60558-001-2.

BIRD, C.; GOURLEY, A.; DEVANBU, P. Detecting patch submission and acceptance in
oss projects. In: Proceedings of the Fourth International Workshop on Mining Software
Repositories. Washington, DC, USA: IEEE Computer Society, 2007. (MSR ’07), p. 26–.
ISBN 0-7695-2950-X.

BOEHM, B.; BASILI, V. R. Software defect reduction top 10 list. Computer, IEEE
Computer Society Press, Los Alamitos, CA, USA, v. 34, n. 1, p. 135–137, jan. 2001.
ISSN 0018-9162.

BOUGIE, G.; TREUDE, C.; GERMAN, D.; STOREY, M.-A. A comparative explo-
ration of freebsd bug lifetimes. In: Mining Software Repositories (MSR), 2010 7th IEEE
Working Conference on. [S.l.: s.n.], 2010. p. 106 –109.

BUGZILLA. Bug Fields. 2015. Available at 〈https://bugzilla.mozilla.org/page.cgi?id=
fields.html〉.

CAGLAYAN, B.; MISIRLI, A. T.; MIRANSKYY, A.; TURHAN, B.; BENER, A. Factors
characterizing reopened issues: a case study. In: Proceedings of the 8th International
Conference on Predictive Models in Software Engineering. New York, NY, USA: ACM,
2012. (PROMISE ’12), p. 1–10. ISBN 978-1-4503-1241-7.

CANFORA, G.; CECCARELLI, M.; CERULO, L.; PENTA, M. D. How long does a
bug survive? an empirical study. In: Proceedings of the 2011 18th Working Conference



BIBLIOGRAPHY 107

on Reverse Engineering. Washington, DC, USA: IEEE Computer Society, 2011. (WCRE
’11), p. 191–200. ISBN 978-0-7695-4582-0.

CHACON, S. Pro Git. 1st. ed. Berkely, CA, USA: Apress, 2009. ISBN 1430218339,
9781430218333.

CLARK, S.; COLLIS, M.; BLAZE, M.; SMITH, J. M. Moving targets: Security and
rapid-release in firefox. In: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security. New York, NY, USA: ACM, 2014. (CCS ’14), p.
1256–1266. ISBN 978-1-4503-2957-6.

COCKBURN, A.; WILLIAMS, L. Agile software development: It’s about feedback and
change. Computer, IEEE Computer Society, v. 36, n. 6, p. 0039–43, 2003.

CZERWONKA, J.; GREILER, M.; TILFORD, J. Code reviews do not find bugs. how
the current code review best practice slows us down. In: 37th International Conference
on Software Engineering (ICSE). [S.l.: s.n.], 2015.

DALKEY, N.; HELMER, O. An Experimental Application of the DELPHI Method to
the Use of Experts. Management Science, v. 9, n. 3, p. 458–467, April 1963.

D’AMBROS, M.; LANZA, M.; ROBBES, R. An extensive comparison of bug prediction
approaches. In: Mining Software Repositories (MSR), 2010 7th IEEE Working Confer-
ence on. [S.l.: s.n.], 2010. p. 31–41. ISBN 978-1-4244-6803-4.

EADDY, M.; ZIMMERMANN, T.; SHERWOOD, K. D.; GARG, V.; MURPHY, G. C.;
NAGAPPAN, N.; AHO, A. V. Do crosscutting concerns cause defects? IEEE Trans.
Softw. Eng., IEEE Press, Piscataway, NJ, USA, v. 34, n. 4, p. 497–515, jul. 2008. ISSN
0098-5589.

FISCHER, M.; PINZGER, M.; GALL, H. Populating a release history database from
version control and bug tracking systems. In: Proceedings of the International Conference
on Software Maintenance. Washington, DC, USA: IEEE Computer Society, 2003. (ICSM
’03), p. 23–. ISBN 0-7695-1905-9.

FOWLER, M. Feature Toggle. 2010. Available at 〈http://martinfowler.com/bliki/
FeatureToggle.html〉.

FOWLER, M.; FOEMMEL, M. Continuous integration. 2005. Available at 〈http://www.
martinfowler.com/articles/continuousIntegration.html〉.

GIGER, E.; PINZGER, M.; GALL, H. Predicting the fix time of bugs. In: Proceedings of
the 2nd International Workshop on Recommendation Systems for Software Engineering.
New York, NY, USA: ACM, 2010. (RSSE ’10), p. 52–56. ISBN 978-1-60558-974-9.

HASSAN, A. E. The road ahead for mining software repositories. Frontiers of Software
Maintenance, 2008.



108 BIBLIOGRAPHY

HERZIG, K.; JUST, S.; ZELLER, A. It’s not a bug, it’s a feature: How misclassification
impacts bug prediction. In: Proceedings of the 2013 International Conference on Software
Engineering. Piscataway, NJ, USA: IEEE Press, 2013. (ICSE ’13), p. 392–401. ISBN 978-
1-4673-3076-3.

HOOIMEIJER, P.; WEIMER, W. Modeling bug report quality. In: Proceedings of the
twenty-second IEEE/ACM international conference on Automated software engineering.
New York, NY, USA: ACM, 2007. (ASE ’07), p. 34–43. ISBN 978-1-59593-882-4.

JANZEN, D. S.; SAIEDIAN, H. Does test-driven development really improve software
design quality? Software, IEEE, IEEE, v. 25, n. 2, p. 77–84, 2008.

JEONG, G.; KIM, S.; ZIMMERMANN, T.; YI, K. Improving code review by predicting
reviewers and acceptance of patches. [S.l.], 2009. Technical report.

JONGYINDEE, A.; OHIRA, M.; IHARA, A.; MATSUMOTO, K.-I. Good or bad com-
mitters? a case study of committers’ cautiousness and the consequences on the bug fixing
process in the Eclipse project. In: Proc. of the 2011 Joint Conf. of the 21st International
Workshop on Softw. Measurement and the 6th International Conf. on Softw. Process and
Product Measurement. Washington, DC, USA: IEEE Computer Society, 2011. p. 116–125.
ISBN 978-0-7695-4565-3.

JONO. Everybody hates Firefox updates. 2012. Available at 〈http://evilbrainjono.net/
blog?permalink=1094〉.

KAGDI, H.; COLLARD, M. L.; MALETIC, J. I. A survey and taxonomy of approaches
for mining software repositories in the context of software evolution. J. Softw. Maint.
Evol., John Wiley & Sons, Inc., New York, NY, USA, v. 19, p. 77–131, March 2007. ISSN
1532-060X.

KALLIAMVAKOU, E.; DAMIAN, D.; BLINCOE, K.; SINGER, L.; GERMAN, D. M.
Open source-style collaborative development practices in commercial projects using
github. In: The 37th International Conference of Software Engineering (ICSE 2015).
[S.l.: s.n.], 2015.

KHOMH, F.; DHALIWAL, T.; ZOU, Y.; ADAMS, B. Do faster releases improve software
quality? an empirical case study of mozilla firefox. In: Proceedings of the 9th IEEE
Working Conference on Mining Software Repositories. [S.l.: s.n.], 2012. p. 179–188. ISBN
978-1-4673-1761-0.

KIM, S.; WHITEHEAD JR., E. J. How long did it take to fix bugs? In: Proceedings of
the 2006 international workshop on Mining software repositories. New York, NY, USA:
ACM, 2006. (MSR ’06), p. 173–174. ISBN 1-59593-397-2.

KIM, S.; ZIMMERMANN, T.; JR., E. J. W.; ZELLER, A. Predicting faults from cached
history. In: Proceedings of the 29th international conference on Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2007. (ICSE ’07), p. 489–498. ISBN
0-7695-2828-7.



BIBLIOGRAPHY 109

LAFORGE, A. Release Early, Release Often. 2010. Available at 〈http://blog.chromium.
org/2010/07/release-early-release-often.html〉.

LEHMAN, M. M.; RAMIL, J. F.; WERNICK, P. D.; PERRY, D. E.; TURSKI, W. M.
Metrics and laws of software evolution-the nineties view. In: IEEE. Software Metrics
Symposium, 1997. Proceedings., Fourth International. [S.l.], 1997. p. 20–32.

MANTYLA, M.; KHOMH, F.; ADAMS, B.; ENGSTROM, E.; PETERSEN, K. On
rapid releases and software testing. In: Software Maintenance (ICSM), 2013 29th IEEE
International Conference on. [S.l.: s.n.], 2013. p. 20–29. ISSN 1063-6773.

MARCUS, A.; POSHYVANYK, D.; FERENC, R. Using the conceptual cohesion of
classes for fault prediction in object-oriented systems. IEEE Trans. Softw. Eng., IEEE
Press, Piscataway, NJ, USA, v. 34, n. 2, p. 287–300, mar. 2008. ISSN 0098-5589.

MOSER, R.; PEDRYCZ, W.; SUCCI, G. A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction. In: Proceedings of the
30th international conference on Software engineering. New York, NY, USA: ACM, 2008.
(ICSE ’08), p. 181–190. ISBN 978-1-60558-079-1.

MOZILLA. Committing rules and responsibilities. 2015. Available at 〈https:
//developer.mozilla.org/en-US/docs/Mozilla/Developer guide/Committing Rules
and Responsibilities〉.

NAGAPPAN, N.; ZELLER, A.; ZIMMERMANN, T.; HERZIG, K.; MURPHY, B.
Change bursts as defect predictors. In: Proceedings of the 2010 IEEE 21st International
Symposium on Software Reliability Engineering. Washington, DC, USA: IEEE Computer
Society, 2010. (ISSRE ’10), p. 309–318. ISBN 978-0-7695-4255-3.

NGUYEN, T. H. D.; ADAMS, B.; HASSAN, A. E. A case study of bias in bug-fix
datasets. In: Proceedings of the 2010 17th Working Conference on Reverse Engineering.
[S.l.: s.n.], 2010. p. 259–268. ISBN 978-0-7695-4123-5.

NUROLAHZADE, M.; NASEHI, S. M.; KH, S. H.; RAWAL, S. The role of patch review
in software evolution: an analysis of the mozilla firefox. In: Proceedings of the joint
international and annual ERCIM workshops on Principles of. [S.l.: s.n.], 2009. p. 9–18.

O’DUINN, J. Farewell to Tinderbox, the world’s 1st? 2nd? Continuous Integration
server. 2014. Available at 〈http://oduinn.com/blog/2014/06/04/farewell-to-tinderbox/〉.

OHIRA, M.; HASSAN, A.; OSAWA, N.; MATSUMOTO, K. The impact of bug man-
agement patterns on bug fixing: A case study of eclipse projects. In: Proceedings of 28th
IEEE International Conference on Software Maintenance (ICSM2012). [S.l.: s.n.], 2012.

PANJER, L. D. Predicting eclipse bug lifetimes. In: Proceedings of the Fourth Interna-
tional Workshop on Mining Software Repositories. Washington, DC, USA: IEEE Com-
puter Society, 2007. (MSR ’07), p. 29–. ISBN 0-7695-2950-X.



110 BIBLIOGRAPHY

PARK, J.; KIM, M.; RAY, B.; BAE, D.-H. An empirical study of supplementary bug
fixes. In: 9th IEEE Working Conference on Mining Software Repositories. [S.l.: s.n.],
2012. p. 40–49. ISSN 2160-1852.

PLEWNIA, C.; DYCK, A.; LICHTER, H. On the influence of release engineering on
software reputation. In: 2nd International Workshop on Release Engineering. [S.l.: s.n.],
2014.

RIGBY, P. C.; GERMAN, D. M.; COWEN, L.; STOREY, M.-A. Peer review on open
source software projects: Parameters, statistical models, and theory. ACM Transactions
on Software Engineering and Methodology, p. 34, 2014.

RIGBY, P. C.; STOREY, M.-A. Understanding broadcast based peer review on open
source software projects. In: ACM. Proceedings of the 33rd International Conference on
Software Engineering. [S.l.], 2011. p. 541–550.

SHIHAB, E.; IHARA, A.; KAMEI, Y.; IBRAHIM, W. M.; OHIRA, M.; ADAMS, B.;
HASSAN, A. E.; MATSUMOTO, K.-I. Predicting re-opened bugs: A case study on
the eclipse project. In: Proceedings of the 2010 17th Working Conference on Reverse
Engineering. Washington, DC, USA: IEEE Computer Society, 2010. (WCRE ’10), p.
249–258. ISBN 978-0-7695-4123-5.

SHIHAB, E.; IHARA, A.; KAMEI, Y.; IBRAHIM, W.; OHIRA, M.; ADAMS, B.;
HASSAN, A.; MATSUMOTO, K.-I. Studying re-opened bugs in open source software.
Empirical Software Engineering, Springer Netherlands, p. 1–38, 2012. ISSN 1382-3256.
10.1007/s10664-012-9228-6.

SLAUGHTER, S. A.; HARTER, D. E.; KRISHNAN, M. S. Evaluating the cost of software
quality. Commun. ACM, ACM, New York, NY, USA, v. 41, n. 8, p. 67–73, ago. 1998.
ISSN 0001-0782.

ŚLIWERSKI, J.; ZIMMERMANN, T.; ZELLER, A. When do changes induce fixes? In:
Proceedings of the 2005 international workshop on Mining software repositories. New
York, NY, USA: ACM, 2005. (MSR ’05), p. 1–5. ISBN 1-59593-123-6.

SOUZA, R.; CHAVEZ, C. Impact of the Four Eyes Principle on Bug Reopening: the Case
of Eclipse. [S.l.], 2011. Technical report.

SOUZA, R.; CHAVEZ, C. Characterizing verification of bug fixes in two open source
IDEs. In: 9th IEEE Working Conference of Mining Software Repositories, MSR 2012,
June 2-3, 2012, Zurich, Switzerland. [S.l.: s.n.], 2012. p. 70–73.

SOUZA, R.; CHAVEZ, C.; BITTENCOURT, R. Patterns for cleaning up bug data. In:
Proc. of the 1st Workshop on Data Analysis Patterns in Softw. Engineering. [S.l.]: IEEE,
2013.



BIBLIOGRAPHY 111

SOUZA, R.; CHAVEZ, C.; BITTENCOURT, R. Patterns for extracting high level infor-
mation from bug reports. In: Proc. of the 1st Workshop on Data Analysis Patterns in
Softw. Engineering. [S.l.]: IEEE, 2013.

SOUZA, R.; CHAVEZ, C.; BITTENCOURT, R. On integration repositories, build sher-
iffs, and patch backouts. Tiny Transactions on Computer Science (TinyToCS), v. 3, Mar
2015.

SOUZA, R.; CHAVEZ, C.; BITTENCOURT, R. Patch rejection in firefox: Negative
reviews, backouts, and issue reopening. Journal of Software Engineering Research and
Development, 2015. To appear.

SOUZA, R.; CHAVEZ, C.; BITTENCOURT, R. Rapid releases and patch backouts:
A software analytics approach. Software, IEEE, v. 32, n. 2, p. 89–96, Mar 2015. ISSN
0740-7459.

SOUZA, R.; CHAVEZ, C. von F. G.; BITTENCOURT, R. A. Do rapid releases affect
bug reopening? A case study of firefox. In: 2014 Brazilian Symposium on Software
Engineering, Maceió, Brazil, September 28 - October 3, 2014. [S.l.: s.n.], 2014. p. 31–40.

WANG, X. O.; BAIK, E.; DEVANBU, P. T. Operating system compatibility analysis of
eclipse and netbeans based on bug data. In: Proceedings of the 8th Working Conference on
Mining Software Repositories. New York, NY, USA: ACM, 2011. (MSR ’11), p. 230–233.
ISBN 978-1-4503-0574-7.

WEISS, C.; PREMRAJ, R.; ZIMMERMANN, T.; ZELLER, A. How long will it take to
fix this bug? In: Proceedings of the Fourth International Workshop on Mining Software
Repositories. Washington, DC, USA: IEEE Computer Society, 2007. (MSR ’07), p. 1–.
ISBN 0-7695-2950-X.

ZENG, H.; RINE, D. Estimation of software defects fix effort using neural networks.
In: Proceedings of the 28th Annual International Computer Software and Applications
Conference - Workshops and Fast Abstracts - Volume 02. Washington, DC, USA: IEEE
Computer Society, 2004. (COMPSAC ’04), p. 20–21. ISBN 0-7695-2209-2-2.

ZHANG, F.; KHOMH, F.; ZOU, Y.; HASSAN, A. An empirical study on factors impact-
ing bug fixing time. In: Proc. of the 19th Working Conference on Reverse Engineering
(WCRE). [S.l.: s.n.], 2012.

ZIMMERMANN, T.; NAGAPPAN, N.; GUO, P. J.; MURPHY, B. Characterizing and
predicting which bugs get reopened. In: Proceedings of the 2012 International Conference
on Software Engineering. Piscataway, NJ, USA: IEEE Press, 2012. (ICSE 2012), p. 1074–
1083. ISBN 978-1-4673-1067-3.


