
Sentiment Analysis of Travis CI Builds
Rodrigo Souza

Department of Computer Science
Federal University of Bahia (UFBA)

Salvador, Brazil
Email: rodrigorgs@ufba.br

Bruno Silva
University of Salvador (UNIFACS)

Salvador, Brazil
Email: bruno.carreiro@pro.unifacs.br

Abstract—Human factors such as sentiments, emotions, mood,
and stress along with their potential effect on software devel-
opment are of paramount importance in software engineering,
as we still strongly rely on human-to-human interaction for per-
forming software development activities and driving results. With
the advance of sentiment analysis tools, software engineering
researchers have investigated the interplay between developers’
sentiment and software engineering tasks such as issue fixing
times. However, there is a lack of studies analyzing whether
there is a relation between developers’ sentiment and builds
performed by continuous integration servers. Build breakage is
not desired as it represents a signal that something went wrong in
the software development activity and that extra work or rework
should be done. In this paper, we report an empirical assessment
over Travis CI builds and the corresponding commits in order to
understand a potential association between developers’ sentiment
and build breakage. We found evidence that negative sentiment
both affects and is affected by the result of the build process,
although the influence seems to be small. Also, we found that
developers tend to be more positive when writing about the CI
server in commit messages.

Keywords-Continuous Integration; Sentiment Analysis; Human
factors on Software Engineering.

I. INTRODUCTION

Software development is primarily conducted by humans.
Even with the advance of software engineering technologies
to support the automation of several tasks, we still strongly
rely on human-to-human interaction for performing software
development activities and driving results. Human factors
such as mood and emotion are often neglected in the soft-
ware engineering field whereas they are strongly associated
to problem-solving [1]. For that matter, researchers have
recently investigated human aspects in software engineering,
including developers’ sentiment expressed through software
artifacts such as issue comments and commit logs [2]–[6]. In
software engineering, as in other human-oriented activities,
the exploration of emotional awareness may improve the
way engineers assign tasks and collaborate in order to better
coordinate software development activities [7].

Researchers have found an association between develop-
ers’ sentiment and the number of files involved in software
changes [6], issue fixing times [5], programming language and
team geographical distribution [2]. They also found that happy
developers are indeed better problem solvers in terms of their
analytical abilities [1]. However, there is a lack of investigation
on whether different levels of developers’ sentiment affect the

status of builds in continuous integration (CI) servers.
CI servers have achieved widespread use as they play an

essential role in automating the integration process by building
the system every time source code changes are pushed to
the repository, thus reliably anticipating integration issues.
Broken builds — those builds in which the source code
does not compile or fails to pass all automated tests — are
not desired and they represent a signal that something went
wrong in the software development activity and that extra
work or rework should be done. Therefore, understanding
whether and how developers’ sentiment is associated with
project builds is important to discover new ways of improving
software development. Based on this assumption, we pursued
the following research questions:

RQ1: Are commits with negative sentiment more likely
to result in a broken build? Our intuition is that negative
sentiment, as expressed by developers in commit messages,
may lead developers to make mistakes that ultimately result
in a broken build.

RQ2: Are commits following a broken build more likely
to be negative? We hypothesize that broken builds arouse
negative feelings such as frustration, anger, and hopelessness,
which may be expressed in commit messages.

RQ3: What is the overall sentiment in commit messages
mentioning the CI server? We expect messages mentioning
the CI server to appear after broken builds, expressing negative
sentiment.

In order to address our research questions, we conducted
an empirical assessment involving 1,262 projects hosted on
GitHub that use Travis CI, a popular CI server for open source
projects. To this end, we used the TravisTorrent data set [8],
containing information about more than 609k builds of those
projects.

The rest of the paper is organized as follows: Section II
explains our study settings; Section III presents results and
corresponding discussion; and Section IV summarizes findings
and future work.

II. METHODS

We analyzed 1,262 projects in Java and Ruby that use
Travis CI, whose build metadata was made available in the
TravisTorrent data set [8]1. For those projects, we also cloned
their GitHub repository and extracted the messages associated

1We used the data set released on February 2, 2017.

TABLE I
SUMMARY OF THE DATA SET

Number of projects 1,262

Number of builds 609,467

Number of commits 1,016,017

% of broken builds 26.5%

% of builds with negative sentiment 11.7%

% of builds with positive sentiment 6.6%

with all commits in their history. Information about the data
is presented in Table I.

A. Continuous integration

Every time new commits are pushed to a project’s GitHub
repository, Travis CI starts the build process, which can be split
into one or more build jobs – either to parallelize the execution
of automated tests or to test multiple platforms. Each build job
can be either successful (if its status is passed) or broken (if
its status is either failed, errored, or canceled). We consider a
build to be successful only if all its build jobs are successful.

B. Sentiment analysis

To analyze the sentiment in commit messages, we used
the Java version of the SentiStrength tool [9], also applied
in previous software engineering studies [2], [6], [7], [10].
SentiStrength assigns to each word in a sentence a sentiment
score, which is a pair composed of a positive score from 1
(not positive) to 5 (extremely positive), and a negative score
from -1 (not negative) to -5 (extremely negative)2, according
to a prepopulated database of positive and negative words.
Additional rules can modify the scores for a word, such as
booster words (e.g. very), repeated letters in a word (e.g.
haaaaappy), and exclamation marks.

The sentiment score of a text is then computed as the
maximum of the positive scores and the minimum of the
negative scores of the words in the text. For instance, in the
sentence “I love tests, but dislike the awful API”, three words
are found in the sentiment database, together with their scores:
love [3], dislike [-3], and awful [-4]. As a result, the sentence
is both positive and negative, and its sentiment score is 3,-4.

As each build can be associated with multiple commits, we
computed the sentiment score of each commit and determined
the sentiment score of the build to be the maximum of the
positive scores and the minimum of the negative scores.

C. Tailoring the word database for software engineering

By manually inspecting the sentiment scores computed
for a sample of all commit messages, we found that some
words classified as negative are in fact technical terms used
in software engineering, such as failure, bug, and violation.
As a result, many neutral commits were being classified as
highly negative, biasing the results. To mitigate the problem,
we removed those words from SentiStrength’s database, to-
gether with other words identified by a previous study [7].
After further inspection, we also removed the words broken,

2SentiStrengh does not consider zero as a sentiment score.

537,647537,647 65,04665,046 5,9405,940 805805 2929

88.22%88.22% 10.67%10.67% 0.97% 0.97% 0.13% 0.13% 0.00% 0.00%0%

25%

50%

75%

100%

−1 −2 −3 −4 −5
Negative score

P
ro

po
rt

io
n Build status

successful

broken

Fig. 1. Proportion of broken builds for each negative score. The error bars
show the confidence interval for the proportion at the 95% confidence level.
The dashed line represents the proportion of broken builds overall. The figures
above the bars are the number of builds for each negative score; below the
bars, the corresponding proportion.

coerce, against, and mock (they appear, for instance, in neutral
sentences such as “test against mocked command output”).

D. Data analysis

To answer the research questions, we computed contingency
tables by counting the number of broken and successful builds,
the number of builds associated with each sentiment score, and
the number of builds with commit mentioning Travis CI.

For RQ1, we used the chi-squared test of independence
to assess the association between negative/positive messages
and build status. To measure effect size, we used Cramer’s
V, interpreting V < 0.3 as small, V < 0.5 as medium, and
V > 0.5 as large effect size [11].

For RQ2 and RQ3, the positive and negative scores are ordi-
nal, dependent variables. For this reason, we assessed statisti-
cal significance using the Mann-Whitney U test, and measured
the effect size using Cliff’s delta, interpreting |delta| < 0.33
as small, |delta| < 0.474 as medium, and |delta| > 0.474 as
large [12].

The data analysis scripts are available online3.

III. RESULTS AND DISCUSSION

A. RQ1: Are commits with negative sentiments more likely to
result in a broken build?

Figure 1 shows the proportion of broken and successful
builds among builds with negative scores of -1 down to -5.
Although highly negative messages (scores -4 and -5) are rare,
they are more likely to result in a broken build.

The chi-squared test shows that the difference in proportions
is statistically significant, with p = 0.001, although the effect
size is small, with Cramer’s V = 0.005. The analysis was
replicated for positive commit messages but failed to show a
statistically significant difference.

Table II shows a sample of negative messages for commits
that resulted in broken builds. Numbers inside square brackets
are sentiment scores for the preceding words. Commit (a)

3https://gitlab.com/rodrigorgs/msr17-challenge

TABLE II
SAMPLE OF NEGATIVE COMMITS OF BROKEN BUILDS

Score Annotated commit message (snippet)
(a) 1,-4 Use different exclusion[-2] filter, jruby is sad[-4]

(b) 2,-4 Make the Bundler warning less scary[-4] and more
friendly[2]

(c) 1,-4 Remove terrible[-4] dependencies spec

(d) 1,-4 no tests make me a sad[-4] boy, but i must run & will
backfill this one tomorrow

(e) 1,-4 This fixes a really nasty[-3][-1 booster word] bug

87.64%87.64% 11.17%11.17% 1.03% 1.03% 0.15% 0.15% 0.01% 0.01%

0.0%

0.1%

10.0%

−1 −2 −3 −4 −5
Negative score

%
 (

lo
g

sc
al

e) Previous
build status

broken

successful

Fig. 2. Proportion of builds (log scale) associated with each negative score,
split by whether the previous build was broken or successful. The numbers
below the bars are the proportion of previous builds associated with each
negative score.

shows a case where SentiStrength incorrectly classified a tech-
nical term (“exclusion”) as negative. The remaining commit
messages express negative sentiments such as fear (b) and
sadness (d), as well as subjective opinions about bugs and
specifications, as shown in (c) and (e).

Commits with negative sentiment are slightly more likely
to result in broken builds.

B. RQ2: Are commits following a build breakage more likely
to be negative?

Figure 2 shows the proportion of builds associated with
each negative score for builds following either a broken
or a successful build. We ignored builds with more than
one predecessor build, which can occur because of merge
commits. The proportion of builds with more extreme negative
scores is higher after broken builds (p < 0.001 for Mann-
Whitney U test), although the effect size is small (Cliff’s
delta = −0.014).

The same analysis was performed for positive sentiment, as
shown in Figure 3. In this case, the proportion of builds with
higher positive scores is lower after broken builds, except for
the positive score of 5 (p < 0.001 for Mann-Whitney U test),
although the effect size is small (Cliff’s delta = −0.009).

Table III shows a sample of negative messages for commits
included in the next build after a broken build. Commit (a)
refers to a release-related hack; commit (b) is a workaround

93.58%93.58% 5.39% 5.39% 1.01% 1.01% 0.03% 0.03% 0.00% 0.00%

0.0%

0.1%

10.0%

1 2 3 4 5
Positive score

%
 (

lo
g

sc
al

e) Previous
build status

broken

successful

Fig. 3. Proportion of builds (log scale) associated with each positive score,
split by whether the previous build was broken or successful.

TABLE III
SAMPLE OF NEGATIVE COMMITS AFTER BROKEN BUILDS

Score Annotated commit message (snippet)
(a) 1,-5 Horrible[-4], horrible[-4][-1 multiple negative words]

hack[-2] to re-bundle on the 1.9 build

(b) 1,-3 Ridiculously[-3] long cucumber timeout so we’re more
resiliant to travis traffic

(c) 1,-3 Avoid[-2] ugly[-3] warning

(d) 1,-3 Ugh[-3], simple fix to quotes in Gemfile

(e) 1,-5 Definitely hating[-4][-1 booster word] #320

to cope with heavy network traffic in Travis CI’s infrastructure;
commit (c) seems unrelated to Travis CI, since the developer
had been ignoring the previous ten builds; commits (d) and
(e) are due to a previous build with failing tests; specifically
for commit (e), multiple builds failed before the developer
managed to fix bug #320, causing him to hate the bug.

Commits following a build breakage tend to be more
negative and less positive, although the effect size is
small.

C. RQ3: What is the overall sentiment in commit messages
mentioning Travis CI?

Table IV shows the distribution of positive and negative
scores for both commits that mention Travis CI and commits
that do not mention it. The Mann Whitney U test show
a statistically significant difference in both cases: commits
mentioning Travis CI tend to be more positive (p = 0.004)
and less negative (p = 0.005). Both effect sizes are small
(Cliff’s delta = −0.018 and 0.010, respectively).

This result seems to contradict the intuition that developers
talk about Travis CI when they experience the negative emo-
tions of frustration and anger because of broken builds. This
result is more surprising if we consider that developers were
3.5x more likely to mention Travis CI in commit messages
when the last build was broken.

Table V shows a sample of positive commit messages
mentioning Travis CI. In commit (a), “MOAR travis FUN”,

TABLE IV
SENTIMENT SCORES VS. MENTIONING TRAVIS CI

Mentions Travis? 1 2 3 4 5

No 93.38% 5.56% 1.03% 0.03% <0.01%
Yes 92.87% 5.91% 1.20% 0.02% 0.00%

Mentions Travis? -1 -2 -3 -4 -5

No 88.20% 10.70% 0.97% 0.13% <0.01%
Yes 88.88% 9.87% 1.06% 0.17% 0.01%

TABLE V
SAMPLE OF POSITIVE COMMITS MENTIONING TRAVIS CI

Score Annotated commit message (snippet)
(a) 3,-1 MOAR travis FUN[2]![+0.6 punctuation emphasis]

(b) 3,-1 MY FIRST COMMIT <3 [1 emoticon] (it would be so
awesome[3] if this would make travis green) :P

(c) 3,-1 travis is kinda down, lets hope[3] nothing breaks while I
sleep

(d) 3,-1 Make specs even slower, hopefully Travis will enjoy[3]
this.

(e) 2,-1 Final slash may, or may not, be here (thanks[2] Travis)

the capitalization of words and the use of “moar” (internet
slang for “more”) are evidence of sarcasm. Commits (b) and
(c) express hope that the next build will be successful. Finally,
commits (d) and (e) show a personification of Travis CI; (d)
signals the need to please Travis CI, and (e) expresses gratitude
because Travis CI helped the developer discover a corner case
in a test case.

Commits mentioning Travis CI tend to be more positive
and less negative.

D. Discussion

The results suggest that negative sentiment impairs the
success of a build, which is consistent with the hypothesis
that negative sentiment can affect developers’ analytical abil-
ities [1]. We also found that broken builds are more likely to
be followed by negative sentiment, creating a feedback loop.
Both results, however, had a small effect size, which suggests
that sentiment plays a minor role in the success of a build.

The analysis of commits mentioning Travis CI showed a
trend towards positive sentiment, with examples of thankful-
ness and hope. We also observed that, since SentiStrength
is not able to identify sarcasm and irony in the messages,
some commits classified as positive may actually be an ironic
expression of negative sentiment.

In fact, the precision of SentiStrength is the main threat to
the validity of the results. In preliminary analyses, with the
original SentiStrength word database, the observed effect size
was much larger. Although we removed from the database a
list of technical words that carry no negative connotation in
the software domain, the list was not comprehensive; therefore,
the actual effect sizes may be even smaller than reported.

IV. CONCLUSION

To our knowledge, this is the first study that analyzed the
association between developers’ sentiment and build breakage
in a continuous integration (CI) process. We found evidence
that negative sentiment both affects and is affected by the result
of the build process, although the influence seems to be small.
We also found that developers tend to be more positive when
writing about the CI server in commit messages.

As future work, we suggest an additional effort to improve
the calibration of sentiment analysis tools, taking domain-
specific words into consideration. Another option is to man-
ually classify a subset of all commit messages and then
apply supervised sentiment analysis. Furthermore, to better
understand developers’ sentiment towards the CI server, we
plan to classify commits according to a more detailed set of
sentiments, such as hope, frustration, gratitude, stress, among
others. Although no automated tool currently identifies all
those sentiments, tools such as TensiStrength4 may be used
to analyze stress and relaxation. Finally, we intend to analyze
how sentiment differs among commits with distinct purposes,
such as bug fixing, feature implementation, and refactoring.

REFERENCES

[1] D. Graziotin, X. Wang, and P. Abrahamsson, “Happy software devel-
opers solve problems better: psychological measurements in empirical
software engineering,” PeerJ, vol. 2, p. e289, Mar. 2014.

[2] E. Guzman, D. Azcar, and Y. Li, “Sentiment analysis of commit
comments in GitHub: an empirical study,” in Proc. of the 11th Working
Conf. on Mining Software Repositories. ACM, 2014, pp. 352–355.

[3] A. Murgia, P. Tourani, B. Adams, and M. Ortu, “Do developers feel
emotions? An exploratory analysis of emotions in software artifacts,”
in Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014. ACM, 2014, pp. 262–271.

[4] N. Novielli, F. Calefato, and F. Lanubile, “The challenges of sentiment
detection in the social programmer ecosystem,” in Proceedings of the
7th International Workshop on Social Software Engineering, ser. SSE
2015. New York, NY, USA: ACM, 2015, pp. 33–40.

[5] M. Ortu, B. Adams, G. Destefanis, P. Tourani, M. Marchesi, and
R. Tonelli, “Are bullies more productive?: Empirical study of affective-
ness vs. issue fixing time,” in Proc. 12th Working Conference on Mining
Software Repositories, ser. MSR ’15. IEEE Press, 2015, pp. 303–313.

[6] V. Sinha, A. Lazar, and B. Sharif, “Analyzing developer sentiment in
commit logs,” in Proceedings of the 13th International Conference on
Mining Software Repositories, ser. MSR ’16. New York, NY, USA:
ACM, 2016, pp. 520–523.

[7] M. R. Islam and M. F. Zibran, “Towards understanding and exploiting
developers’ emotional variations in software engineering,” 2016 IEEE
14th International Conference on Software Engineering Research, Man-
agement and Applications (SERA), pp. 185–192, 2016.

[8] M. Beller, G. Gousios, and A. Zaidman, “TravisTorrent: Synthesizing
Travis CI and GitHub for full-stack research on continuous integration,”
in Proc. 14th Working Conf. on Mining Software Repositories, 2017.

[9] M. Thelwall, The Heart and Soul of the Web? Sentiment Strength
Detection in the Social Web with SentiStrength. Cham: Springer
International Publishing, 2017, pp. 119–134.

[10] R. Jongeling, S. Datta, and A. Serebrenik, “Choosing your weapons: On
sentiment analysis tools for software engineering research,” in ICSME.
IEEE, 2015, pp. 531–535.

[11] J. Cohen, Statistical Power Analysis for the Behavioral Sciences.
Lawrence Erlbaum Associates, 1988.

[12] J. Romano, J. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate
statistics for ordinal level data: Should we really be using t-test and
Cohen’s d for evaluating group differences on the NSSE and other
surveys?” in annual meeting of the Florida Association of Institutional
Research, 2006, pp. 1–3.

4http://sentistrength.wlv.ac.uk/TensiStrength.html

