

GuideAutomator: Automated User Manual Generation

with Markdown

Allan dos Santos Oliveira1, Rodrigo Souza1

1 Department of Computer Science – Federal University of Bahia (UFBA) – Salvador –

BA – Brazil

allanoliver@dcc.ufba.br, rodrigo@dcc.ufba.br

Abstract. User manual, also known as user guide, is a technical document for

communication designed to assist end users of a product. It aims at filling the

gap between what is easily deductible and what is not. A complicating factor

for those who write these documents is to keep them up-to-date with changes on

the application over time, like addition/removal of features or just changes on

user interfaces (documented as screenshots). This work aims at assisting writers

of such documents, for web applications only, providing automated screen

capture, reducing maintenance cost and user manual inconsistency. We provide

GuideAutomator, which enables this automatization through writing of

documents under Markdown syntax and encapsulation of Selenium Web Driver.

https://youtu.be/zXZyNgJOgdY

1. Introduction

User experience has been a rising concern in the software industry, due to its decisive role

on user engagement and consequently on software’s success. A good user experience

design enhances user satisfaction by effectively addressing the needs and circumstances

of its users, which is done mainly by providing carefully considered user interfaces.

 Even though software user interfaces are getting easier to use, applications still

require user manuals for several reasons. Some notorious reasons are: unexperienced

users, first time users may face difficulties using the application; domains policy, as some

domains formally require user manuals to support its users; support critical decisions,

some critical actions like delete resources may rise doubts; reveal full potential of an

application, some functionalities might not be explicitly visible nor easily deductible.

 Therefore, the user manual is an important part of software documentation.

However, development teams often ignore it, primarily because of painful standard tools,

such as popular text editors like Microsoft Word1 and LibreOffice Writer2. Those are

mentioned as painful because they slow down development speed, make versioning

challenging to manage due to binary files, and make it harder to keep software

documentation synced with the software’s growth, especially as these documents contain

many screen capture images.

1 Microsoft Word. Retrieved July 30 from https://products.office.com/en/word
2 LibreOffice Writer. Retrieved July 30 from https://www.libreoffice.org/discover/writer/

 To address these issues, this work assists designers of user manuals for web

applications by providing GuideAutomator, a user manual generation tool with automated

screen capture implemented upon Selenium Web Driver3 (a browser automation

framework), to be used with Markdown4 (a lightweight markup language), which can be

easily versioned to improve documentation maintainability.

All user manuals aim at providing clear information to their users about how to

use an application. In order to accomplish that, there are some good practices for

designing such documents (Hodgson, 2007). These practices may include use of

summary, instructions on how to use main functionalities, troubleshooting section,

glossary, etc. The most important parts, which are the instructions, uses several

techniques to facilitate user assistance, like providing a systematic sequence to

accomplish a certain task. To support that an effective approach is to make use of screen

capture.

 Screen captures or screenshots, under this context, are images taken from an

application to reproduce either full or part of a user interface in a given application state.

It reduces reasoning time for users to find or execute a function and this is the desired

scenario to all stakeholders. GuideAutomator comes in to bring automation to this process

of screen capture, alongside with Markdown writing as described in the next section.

 The remainder of this paper is divided into 5 sections. In section 2 we go through

GuideAutomator’s description and operation. Section 3 presents the related work. Section

4 draws the conclusion and future work. Finally, Section 5 lists the references for this

work.

2. An automation tool

GuideAutomator is a command line Node.js application, released under MIT license,

which takes as input a mix of a widely used lightweight markup language, Markdown,

with GuideAutomator’s API for performing actions on web browsers. Our API is a

wrapper for a browser automation tool, Selenium Web Driver. Figure 1 presents the

application workflow. Essentially, a user manual writer composes the document with

Markdown’s rich text as in any common Markdown document. However, to reproduce

user steps and capture the outcome stages of these steps, the writer must also include our

API commands into the Markdown text. Our application processes the API commands

and the user manual can be then outputted to PDF and HTML formats.

 GuideAutomator runs on Windows, Linux and Mac OS platforms, as long as it

has Node.js installed. Currently, it only supports Chrome Browser with its respective web

driver, ChromeDriver, as discussed on the Selenium Web Driver subsection. The

application is available at NPM5, the default package manager for Node.js, under the

3
 Selenium WebDriver. Retrieved April 17, 2016 from http://www.seleniumhq.org/projects/webdriver

4
 Gruber, John. Markdown Syntax Documentation. Retrieved April 17, 2016 from

https://daringfireball.net/projects/markdown/syntax
5
 npm, Inc. (2016). guide-automator. Retrieved May 22 from https://www.npmjs.com/package/guide-

automator

name of “guide-automator” and runs as the example shown on Figure 2. The application

takes two parameters: input file path (Markdown mixed with GuideAutomator’s API) and

output folder path (for placing generated documents).

Figure 1. GuideAutomator’s workflow.

Figure 2. Example for running GuideAutomator.

2.1. Markdown

Markdown is a plain text formatting syntax created in 2004 by John Gruber, originally

designed to be converted to valid XHTML or HTML. Over the last decade, many

extensions were created making it possible to convert Markdown’s language to many

other formats, like PDF, LaTeX, RTF, etc. Alongside with all these possibilities, its ease

of use has made Markdown very popular in the software community. Some popular

applications that make use of Markdown are GitHub6 and StackOverflow7. These

applications and many others use either standard Markdown syntax or a custom extension

of the original markup language.

6
 GitHub Inc. About writing and formatting on GitHub. Retrieved April 17, 2016 from

https://help.github.com/articles/about-writing-and-formatting-on-github/
7
 Stack Overflow Inc. How do I format my posts using Markdown or HTML? Retrieved April 17, 2016

from http://stackoverflow.com/help/formatting

Markdown was intended to be simple, easy-to-read and easy-to-write. Its syntax is

composed by regular text with a few non-alphabetic characters, which were chosen to

look like what they mean. Some of the non-alphabetic characters are “#” (hash) and “*”

(asterisk), which are used to style headers and to define unordered lists, respectively. A

complete syntax definition is available at the official Markdown page by John Gruber.

2.2. Selenium Web Driver

To make automation possible, GuideAutomator encapsulates Selenium Web Driver, a

powerful tool for browser automation, which makes it possible to drive a browser natively

as a user would. It supports of some of the largest browser vendors, such as Firefox,

Chrome, Safari and Internet Explorer. However, due to a few unsupported operations

(take screenshot of viewport only and take screenshot of an element) for some webdrivers,

GuideAutomator v1.0 guarantees support only to ChromeDriver 2.218. As webdrivers

expand their support to required operations, GuideAutomator will expand support to more

web browsers.

Selenium Web Driver provides a rich API for manipulating a web browser. Major

commands and operations are: fetching pages, locating UI (User Interface) elements,

filling in forms and taking screenshots. GuideAutomator’s API incorporates these and

many other commands as described in the following subsection.

2.3. API

GuideAutomator provides an API for performing common behavior of web applications

users, like clicking elements, filling in inputs, etc. Alongside these actions,

GuideAutomator’s API provides a command for taking screenshots, so these images can

automatically be placed on the user manual, regardless of the output format.

 For calling API’s commands, the user manual writer must include on their

Markdown file blocks of GuideAutomator’s code, bounded by specific delimiters,

defined as <automator> for block code beginning and </automator> for block

code end, see example on Figure 3. Commands must be separated by special character “;”

(semicolon), as shown in Figure 2. GuideAutomator can then compile those commands,

and, in case of any failure, it outputs the incorrect token. Otherwise, the application

proceeds with processing those commands. Table 1 shows the current list of available

API commands for GuideAutomator v1.0.

 Once all commands are executed, GuideAutomator gathers all generated images

and places them on their appropriate location in the outcome document. Appropriate

image locations on the outcome document are defined based on the location of their

respective <automator> code block, i.e., the code block that encloses their respective

takeScreenshot or takeScreenshotOf operations. This process can be

repeated as much as needed to keep a user manual up-to-date with its respective

application, as every time GuideAutomator is executed it generates all screen captures all

8
 Google Inc. ChromeDriver - WebDriver for Chrome. Retrieved April 17, 2016 from

https://sites.google.com/a/chromium.org/chromedriver/

over again. Figure 3 and 4 illustrate, respectively, the input file for logging into Yii Blog

Demo9 and the output HMTL page containing generated screenshots. Note that captured

images are placed where their respective block commands were.

Command Description

get(url) Navigates to the page with the specified url.

takeScreenshot Takes screenshot of the browser’s viewport.

takeScreenshotOf(selector) Takes screenshot of the browser’s viewport after the

element identified by the css selector has been scrolled

into view.

fillIn(selector,content) Types content on the element identified by the css

selector.

submit(selector) Submits the form containing the element identified by

the css selector, if there is one.

click(selector) Performs a click on the element identified by the css

selector.

Table 1. GuideAutomator’s API commands, version 1.0.0.

Figure 3. Simple input example for logging into Yii Blog Demo.

9 Yii Software LLC. Yii Blog Demo. Retrieved May 20, 2016 from

http://www.yiiframework.com/demos/blog/index.php/post/index

Figure 4. Generated web page from example in Figure 3.

3. Related Work

GuideAutomator has its roots in approaches such as literate programming, automatic

documentation generators, standardized markup languages, continuous integration, and

functional testing. We comment related work on these topics below.

 Waits and Yankel (2014) claim that standard documentation tools and processes,

based on the collaborative writing of documents using file formats that are binary and

proprietary, such as Microsoft Word documents, are not well integrated into software

development tools and processes. The main problems of the current approach are the

difficulty of merging contributions of different authors, due to limitations of version

control systems, and the inconsistency of document presentation across operating

systems. They propose writing documentation in plain text files, using a standardized

markup language such as Markdown, and then convert it into formats such as PDF and

HTML using a tool such as Pandoc10. GuideAutomator follows this approach and further

automates the process by generating images from user interface scripts interleaved with

text in the documentation.

 Literate programming is an approach to programming in which the source code is

interleaved with text explaining the internals of a program (Knuth, 1984). The focus is on

the documentation, and the source code is presented in parts following the structure of

the documentation. This document can be transformed either into pure source code, which

can be compiled and executed, or into documentation. The approach is currently being

used in reproducible research (Madeyski, 2015). Our tool is also based on documentation

interleaved with source code. In our case, however, the text is not intended to explain the

source code; instead, it explains the system to end users, and the source code is used to

generate images that help explain the text.

 API documentation generators are tools that extract structured comments in the

source code of a program and generate the documentation of its application programming

interface (API), aimed at programmers. API documentation generators include

Doxygen11 and Javadoc12. GuideAutomator is also an automated documentation

generator; however, the documentation is geared towards end users, not programmers.

 Continuous integration is the practice of checking in developers’ source code

changes to a shared repository frequently (Fowler, 2006). Following a check-in, an

automated build process compiles the source code and possibly perform other automated

tasks, such as running unit tests, performing static analysis, and even deploying the

application to servers (in this case, the approach is known as continuous deployment).

Because GuideAutomator automates the task of generating user guides containing screen

captures, it can be included in the continuous integration cycle and enable the creation

and publication of documentation that is in sync with the latest source code change.

10

 John MacFarlane. Pandoc: a universal document converter. Retrieved May 16, 2016 from

http://pandoc.org
11

 Dimitri van Heesch. Doxygen. Retrieved May 16, 2016 from http://www.doxygen.org
12

 Oracle Corporation. Javadoc. Retrieved May 16, 2016 from

http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html

 Functional testing is the process checking whether the behavior of a software

application conforms to its specification, from the end-user point of view, by executing

test cases derived from its specification (Myers et al., 2011). For web applications,

functional testing can be automated using the framework Selenium (Holmes and Kellogg,

2006). GuideAutomator uses Selenium for a different purpose; instead of comparing the

application’s output with a specification, it captures the output so it can be displayed in a

user manual.

4. Conclusion

Development teams often ignore user documentation as a direct result of the pain standard

documentation tools and processes cause (Waits, 2014). To overcome this issue,

GuideAutomator comes in as an easy to write and maintain automation tool for generating

user manuals. Its ease of use and maintenance is due to a high level API for driving a web

browser and taking screenshots, and to its plain text syntax that can be even versioned

alongside the main project source code.

 Screen capture automation dramatically reduces writers’ effort. When the

application changes, one will not need to update every single image in the user manual as

those images will be captured once GuideAutomator is executed to represent the current

application state.

 As future work, we intend to expand support for more web browsers and create

more API commands for browser manipulation. In addition, to provide a better experience

to customers, it is our intention to expand options for taking screenshot to allow, for

instance, image customization like highlights, borders, resizing, etc. Because we are on

the early stages of development, there have been no evaluation of GuideAutomator yet.

Therefore, evaluation on real projects is also on the roadmap, so we will be able to validate

GuideAutomator’s benefits in practical usage.

5. References

Hodgson, P. (2007). Tips for writing user manuals. Retrieved April 17, 2016 from

http://www.userfocus.co.uk/articles/usermanuals.html

Waits, T. and Yankel, J. (2014). Continuos System and User Documentation

Integration.

Knuth, D. (1984). Literate Programming. In The Computer Journal, Vol. 27, No. 2,

97-111.

Madeyski, L. and Kitchenham, B.A. (2015). Reproducible Research–What, Why

and How. Wroclaw University of Technology, PRE W, 8.

Fowler, M. (2006). Continuous Integration. Retrieved May 16, 2016 from

http://martinfowler.com/articles/continuousIntegration.html

Myers, G., Sandler, C. and Badgett, T. (2011). The Art of Software Testing, 3rd

edition. Wiley, New York, NY.

